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SUMMARY

Fully vectorial 3D frequency-domain simulations of vertically coupled integrated-optical microdisk-resonators are de-
scribed. The “rigorous” coupled mode theory model combines numerically computed bend modes of the cavity disk and
guided modes of the straight bus waveguides.
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1 INTRODUCTION

Optical microresonators are at present discussed as building blocks for large-scale
integrated optics [1, 2], where their range of applications includes in particular
filter functions in optical wavelength-division multiplexing. Ref. [3] provides a
recent overview of the field. As a typical example, for this contribution we focus
on vertically coupled [4] microdisk-resonators, shown schematically in Figure 1.

Figure 1: Microdisk resonator, a 3-D configuration with a circular cavity on top of the
two parallel bus waveguides. Two output ports through and drop each receive wavelength-
dependent fractions PT and PD of the input power Pin. z PT

x

PinyPD

The practical design relies crucially on an accurate knowledge of the strength of the interaction between the optical waves
in the cavity and the bus waveguides, as a function of all geometrical and material parameters. While for horizontally
coupled configurations effective-index-like reductions to 2-D problems can be attempted [5, 6, 7], the structure of Figure 1
requires simulations in three spatial dimensions. Also the vectorial properties of the optical fields may become relevant.
Since rigorous 3-D numerical schemes must be considered almost prohibitively expensive, we investigate a coupled mode
theory (CMT) model as a direct realization of the physical notions underlying the resonator design.
Manifold CMT variants for different domains of applications have been proposed [8, 9, 10, 11]. Among these several
studies (see e.g. [12, 5, 6, 7]) deal with the evanescent interaction of waves in circularly bent and straight waveguides,
where most of these describe 2-D implementations. Apparently so far only a few, rather heuristic 3-D studies [13, 14]
exist. This contribution refers to a fully vectorial 3-D CMT implementation, applicable in principle to an arbitrary number
of possibly multi-modal straight or circularly bent waveguides. The formulation is based on a variational or reciprocity
technique [9, 15]; it highly resembles the previous 2-D version in Refs. [16, 17].
The CMT approach requires basis solutions for the constituting elementary problems. These are mode profiles of straight
waveguides and disk profiles with 2-D cross sections, the computation of which is in itself nontrivial. Here we could profit
from a solver based on film-mode matching, as described in Refs. [18, 19, 20]. The analytical field representation on a
laterally or radially unbounded cross section proves to be highly advantageous for the evaluation of the CMT integrals.

2 MODELING BACKGROUND

In line with the most common ringresonator model [21, 11, 22], we assume that the interaction between optical waves
in the bus waveguides and the cavity can be restricted to two “coupler regions” where the cores are in closest proximity.
Figure 2 shows a top view and cross section of the interaction region, and the enclosure by a rectangular computational
window. What follows is meant for the frequency domain; all optical waves oscillate in time ∼ exp(iωt) with real
frequency ω = 2π/(λ

√
ε0µ0), given by the vacuum wavelength λ.
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Figure 2: (a): Top view of the coupler region, for a cavity disk with radius R. (b): Cross section through the symmetry plane z = 0.
The relative core positions are defined by the vertical distance s and the position (“gap”) g of the left flank of the straight core (negative
g indicates overlapping components). (c): The total optical field is assumed to be well represented by modal solutions of the straight
waveguide (top) and the cavity (bottom). Geometrical and material parameters: w = 2.0 µm, hs = 140 nm, nf = 1.98, ns = 1.45,
nc = 1.4017, nd = 1.6062, hd = 1.0 µm, R = 100 µm. Numerical parameters for the CMT integration: ∆x = 40 nm, ∆y = 20 nm,
∆z = 2.0 µm (see text), computational window [xi, xo] = [−12, 4] µm, [yb, yt] = [−4 µm − s, 4 µm − s], [zi, zo] = [−30, 30] µm.

The coupled mode theory model rests on the assumption that the optical electromagnetic field E, H for the compos-
ite coupler structure with permittivity ε can be adequately represented as a superposition of a number of known fields
Em, Hm for problems with permittivity εm. For the coupler of Figure 2, the sketches (c) indicate a natural division. We
choose the Cartesian z-coordinate as the evolution variable for all basis fields, such that the CMT ansatz reads:

E(x, y, z) =
∑
m

Am(z) Em(x, y, z) , H(x, y, z) =
∑
m

Am(z) Hm(x, y, z) . (1)

Em(x, y, z) and Hm(x, y, z) consist of power normalized [23] mode profiles, multiplied by the exponential dependences
on the respective propagation coordinate, all transformed to Cartesian coordinates.
Lorentz’ reciprocity theorem [9] allows to derive evolution equations for the amplitudes Am. Application to the ansatz (1)
leads, after further manipulations [16], but without additional heuristics or approximations, to the coupled mode equations

∑
m

dzAm

∫
(Em × H

∗

k
+ E

∗

k
× Hm)

z
dx dy = −iωε0

∑
m

Am

∫
(ε − εm) Em · E∗

k
dx dy . (2)

After numerically solving this system of equations for the amplitudes Am, by projecting the solution onto the straight
waveguide modes (“taking overlap integrals”, an essential step [16]), one obtains the scattering matrix S for the coupler
region. The element So i (“coupling coefficient”) corresponds to the interaction between input mode i and output mode
o, where (power normalized basis modes) |So i|2 can be interpreted as the relative power transferred to mode o, given a
unit input in mode i. Once these matrices and the propagation constants of the cavity modes are at hand, evaluation of the
power transfer of the full microresonator device is straightforward [11, 22]. Scans over the wavelength parameter allow
to determine the spectral response.
The CMT basis fields are generated by a rigorous, fully vectorial (bend) mode solver based on the film-mode-matching
(FMM) method. The semianalytical procedure relies on a division of the cross section plane into slices with laterally /
radially constant permittivity. Per slice the field is expanded into modes of 1-D multilayer slab waveguides. 3-D modes
are found where the expansions can be connected such that continuity and external boundary conditions are satisfied.
Cf. Refs. [18, 19, 20] for algorithmic details. Only few numerical parameters enter: the numbers of slab modes Ms

per slice and polarization direction, and the vertical computational window [yM
b , yM

t ]. Further the CMT model requires
numerical procedures for the repeated quadrature of the x-y-integrals in Eq. (2) (so far a trapezoidal rule) and for the
integration of the system (2) of ordinary differential equations (a fourth order Runge-Kutta scheme). The extensions of
the computational window and the integration stepsizes ∆x, ∆y, and ∆z enter as numerical parameters.
Due to the lack of 3-D reference data, we had to rely on indirect means for a validation of the implementation: Similar 2-D
procedures can be verified directly [16, 17]. For the case of parallel straight waveguides, numerically exact 3-D reference
results can be generated by standard “supermode” analysis. CMT values for the Sss coefficients in bend-straight coupler
configurations have been compared with semivectorial beam-propagation simulations [24]. Finally, we observed that the
power balance and reciprocity constraints are satisfied with reasonable accuracy.

3 COUPLER SIMULATIONS

The present disk structure supports multiple modes with small attenuation; the three lowest order vectorial, TE-like fields
are taken into account in the following simulations. Table 1 lists the (complex) effective indices of the disk modes for
vertical separations s of 0.5 and 1.0 µm. These are meant relative to the rim of the disk, i.e. the modal fields evolve



with the angular coordinate θ in the cylindrical disk coordinate system as ∼ exp(kneffRθ), where R is the disk radius as
introduced in Figure 2. Figure 3 illustrates the mode profiles for the smaller separation s = 0.5 µm.

s = 0.5 µm s = 1.0 µm
TE0 1.503778 − i 1.35 · 10−9 1.503450 − i 1.53 · 10−9

TE1 1.474931 − i 1.77 · 10−6 1.474585 − i 4.96 · 10−7

TE2 1.451487 − i 5.05 · 10−5 1.451093 − i 1.56 · 10−5

Table 1: Effective indices neff of the disk modes of Figure 3
related to the disk rim. The bus core guides one TE-like mode
with an effective mode index of 1.48229.
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Figure 3: The three lowest order TE-like bend mode profiles supported by the disk for s = 0.5 µm; absolute values |Hy| of the
dominant magnetic component. For the vertical symmetry plane of the coupler, the radial coordinate r (with offset R) coincides with
the x-coordinate in Figure 2. Mode analysis parameters: Ms = 200, [yM

b , yM
t ] = [−10 µm − s, 7 µm − s].

With four basis modes the CMT simulations generate 4 × 4 scattering matrices. Figure 4 summarizes the dependence
of the 16 coefficients So i on the “gap” position, for s = 1.0 µm. g = 0 indicates a setting where, in a top view as in
Figure 2(a), the inner flank of the bus waveguide just touches the rim of the cavity disk. Subscripts s, b0, b1, and b2

identify the modes of the straight waveguide and the three bend modes of the cavity, respectively.
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Figure 4: Scattering matrix coefficients |So i|
2 for s = 1.0 µm versus the lateral disk position g. (a): the self-coupling power of each

mode, (b) the cross-coupling power coefficients between the mode of the straight waveguide and the bend fields, (c): the cross-coupling
coefficients for the bend modes.

Beyond power conservation, the excellent agreement of the dashed and continuous lines in Figure 4(b, c) indicates that
our CMT implementation satisfies the reciprocity properties [9, 22, 23] of the symmetric coupler structure remarkably
well. For each pair of modes m and n, one finds the power |Sn m|2 transferred from mode m at z = −zo to mode n at
z = zo to be equal to the power transfer |Sm n|2 from mode n at z = −zo to mode m at z = zo.
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Figure 5: Coupled mode propagation along the coupler region of Figure 2, for s = 0.5 µm and g = −1.0 µm; absolute values |Hy| of
the dominant magnetic component. At zi = −30 µm the guided TE-like mode of the straight waveguide is launched. Horizontal field
cross sections at y = −0.41 µm, close to the center of the straight core (a) and at y = 0.55 µm, near the center of the disk (b).

Given the numerical solution of Eq. (2) and the mode profile data, the CMT model provides full information about
the electromagnetic field in the coupler region. Figure 5 illustrates the field evolution after excitation in the straight
waveguide, for a configuration s = 0.5 µm, g = −1.0 µm with strong interaction. One observes the depleting of the
straight waveguide mode at the level of the bus core (a) and the beginning of the beating of the three cavity modes at a
higher position inside the disk (b).

4 RESONATOR SPECTRA

Figure 6 shows examples for resonator spectra of symmetric devices for different relative positions of bus waveguides
and cavity, evaluated on the basis of the former coupler scattering matrices. For the large separation (a) one finds a
periodically repeated array of three well separated, narrow peaks in the dropped power or dips in the transmitted power,



respectively. By inspecting the relative amplitudes of the disk modes at resonance, one can assign the first, broadest and
least pronounced dip to the second order, most lossy disk mode b2. The second peak with almost 100% dropped power
can be ascribed to the fundamental mode b0, while the last resonance is due to the first order field b1. As expected, for the
smaller separation (b) with stronger interaction the quality of the resonances decreases. The peaks are shifted moderately,
they broaden, become more pronounced, and start to overlap.
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Figure 6: Relative dropped and transmitted power levels PD, PT versus the vacuum wavelength λ, for symmetrical microresonators
with couplers according to Figure 2, for horizontal cavity position g = 0 and vertical separations s = 1.0 µm (a) and s = 0.5 µm (b).

5 CONCLUSIONS

Based on numerically computed mode profiles of straight bus waveguides and the circular cavity, a 3-D, fully vectorial
frequency-domain coupled mode theory model for the interaction between cavity and bus waveguides has been estab-
lished, that constitutes a robust, efficient, and reasonably accurate tool for ab-initio design of circular optical microres-
onators. In contrast to any “general purpose” rigorous numerical methods, the CMT approach yields directly well defined
values for the physical quantities (coupler scattering matrix coefficients, cavity mode amplitudes) that constitute the stan-
dard description of optical microresonators, as an ideal basis for the practical design of resonator elements. Beyond the
coupling coefficients, in principle the entire 3-D field for the coupling region, resonator spectra, and also the full, wave-
length dependent optical field for the entire microresonator can be evaluated. The procedures have been exemplified by
means of a multimode, vertically coupled microdisk-resonator, where the approach allows to easily access a wide range
of geometrical design parameters.
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