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Abstract. Analysis of cylindrical integrated optical microresonators involves the coupling between
a straight waveguide and a bent waveguide. Our (2D) variant of coupled mode theory is based on
analytically represented mode profiles. With the bend modes expressed in Cartesian coordinates,
coupled mode equations can be derived in a classical way, and solved by numerical integration.
Proper manipulation of the propagation matrix leads to stable results that satisfy the reciprocity
properties for symmetric coupler devices, even in parameter domains of rather compact, radiative
structures and strong interaction, which before seemed unaccessible by a perturbational approach.
Comparisons with FDTD calculations show convincing agreement.

1. INTRODUCTION
Along with the current trend towards large-scale integration in photonics [1], accurate
and efficient design tools for small and densely packed components are required. Arrays
of optical microring resonators (MR) [2] are among the concepts at the focus of the
research. For this paper we consider single resonator elements, consisting of a circular,
ring- or disk-shaped cavity that is evanescently coupled to two straight waveguides.
Rigorous numerical simulations of such devices are possible, e.g. by means of Finite
Difference Time Domain (FDTD) methods [3], but usually those direct calculations are
very time-consuming. Alternatively, one can divide the device into separate regions,
model those individually, and combine the parts into a complete resonator model. The
MR can be separated into four parts: The ring itself, represented by two segments of
a bent waveguide, and the two couplers involving a straight waveguide and a bent
waveguide. Here we will focus on the coupler part. For a discussion of the extension
of these coupler simulations towards a full ringresonator description we refer to Refs.
[4, 5].

For the coupler region, it is again possible to do direct FDTD calculations to determine
at least part of the coupler characteristics. While this works for all configurations,
even those that are highly radiative, the calculation times involved are still relatively
high; especially in three-dimensional simulations the computational effort becomes
unacceptable. For a detailed design parameter analysis, a fast tool is needed to determine
the elements of the coupler scattering matrix that enter the abstract resonator model
[5]. A good candidate is the well-known Coupled Mode Theory (CMT); see e.g. [6,
7, 8, 4] for the general theory, [9] and [10] for an application to microresonators, or
[11] for a preliminary version of the implementation described in this paper. For this
implementation we transform the bend field to Cartesian coordinates and apply a more
or less standard CMT formulation in a rectangular domain. While the theory is as valid
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FIGURE 1. Schematic coupler configuration involving a bent waveguide and a straight waveguide (a).
The straight core of width s is evanescently coupled to the bent waveguide of width b and radius R,
separated by a gap distance g. Refractive indices ng and nb characterize the guiding regions and the
background material. For purposes of modeling in the framework of coupled mode theory, the structure
is considered to be composed of two parts, the isolated bent (b) and straight cores (c). All numerical
examples are computed with default parameters b = s = 1.0 µm, nb = 1.45, ng = 1.6, g ∈ [0.1,1.5]µm,
R ∈ [15,500]µm, and a vacuum wavelength λ = 1.55 µm.

in 3D as it is in 2D, we will restrict to two spatial coordinates, where our own FDTD
program is available for a numerical assessment of the CMT results.

Section 2 gives an outline of the present CMT formulation. In Section 2.1 relations
between the solutions of the coupled mode equations and the the entries of the coupler
scattering matrix are established. It turns out that the correct extraction of the coefficients
related to the waves in the straight waveguide requires a projection onto the basis
mode of the straight core. This is the subject of Section 2.2. Further numerical results
concerning the comparison of coupling coefficients computed by FDTD and CMT and
a discussion of reciprocity properties are presented in Section 3.

2. COUPLED MODE THEORY
A harmonic time dependence ∼ eiωt with angular frequency ω = 2πc/λ and vacuum
wavelength λ is assumed for all fields. We use a Cartesian coordinate system (x,y,z) as a
reference system. In the 2D approach, the field and materials are assumed to be constant
in the y-direction. The analysis is restricted to TE fields. We assume that all individual
waveguides are monomodal, waves are forward propagating, and back-reflections are
negligible (cf. the discussion of the underlying resonator model in Ref. [5]).

Consider the coupler setting as shown in Figure 1. Let {E b,H b} be the electromag-
netic field associated with the bent waveguide (b) with εb as the relative permittivity
distribution. Correspondingly {E s,H s} and εs are the field and permittivity associated
with the straight waveguide (c). Note that εs and εb are the complete permittivity distri-
butions, i.e. functions defined on the x-z plane. Then we write the following ansatz for
the total electric field E and magnetic field H in the coupled structure (a):

E(x,z) = ab(z)Eb(x,z)+as(z)E s(x,z) H(x,z) = ab(z)Hb(x,z)+as(z)H s(x,z). (1)

Here ab(z) and as(z) are the — so far unknown — amplitudes of the bent and straight
waveguide modes, respectively.

The bend mode field is determined by solving the relevant Helmholtz equation in
cylindrical coordinates (see Refs. [11, 5] for details). An eigenmode solver, based on
routines for the numerical evaluation of complex order Bessel and Hankel functions is



employed to calculate the angular propagation constants, after which the radial field is
known analytically. In cylindrical coordinates (r,θ) as introduced in Figure 1, the bend
mode field is given as

E b(r,θ) = E 0
b(r)e−iγbRθ , H b(r,θ) = H 0

b(r)e−iγbRθ , (2)

where γb = βb − iαb is the complex (angular) propagation constant, consisting of the
phase constant βb and the attenuation constant αb. The bend radius R is here defined as
the distance from the origin to the outer rim of the bend (other choices are possible [5]).
E 0

b and H 0
b are the electric and magnetic parts of the (fundamental) bend mode profile.

Written out in components, the 2D TE bend mode field reads:

Eb,r(r,θ) = 0 , Hb,r(r,θ) =
−i

µ0ω r
∂θ Eb,y(r,θ) ,

Eb,y(r,θ) = E0
b,y(r)e−iγbRθ , Hb,y(r,θ) = 0 ,

Eb,θ (r,θ) = 0 , Hb,θ (r,θ) =
i

µ0ω
∂rEb,y(r,θ) .

(3)

The profile is determined completely by the single electric component Eb,y. The field
can be transformed from cylindrical to Cartesian coordinates:

Eb,x(x,z) = 0 , Hb,x(x,z) = cosθ Hb,r(r,θ)− sinθ Hb,θ (r,θ) ,
Eb,y(x,z) = Eb,y(r,θ) , Hb,y(x,z) = 0 ,
Eb,z(x,z) = 0 , Hb,z(x,z) = sinθ Hb,r(r,θ)+ cosθ Hb,θ (r,θ) .

(4)

with r(x,z) =
√

(x2 + z2) and θ(x,z) = arctan z/x. Henceforth without loss of generality,
the above field components are treated as a function of the Cartesian coordinates (x,z).

The electromagnetic field in the straight waveguide is given by

E s(x,z) = E 0
s (x)e−iβsz, H s(x,z) = H0

s (x)e−iβsz, (5)

where βs is the propagation constant and the superscript zero denotes the (fundamental)
mode profile. In 2D and for TE polarization, the components are:

Es,x(x,z) = 0 , Hs,x(x,z) =
−i

µ0ω
∂zEs,y(x,z) ,

Es,y(x,z) = E0
s,y(x)e−iβsz , Hs,y(x,z) = 0 ,

Es,z(x,z) = 0 , Hs,z(x,z) =
i

µ0ω
∂xEs,y(x,z) .

(6)

For any two electromagnetic fields {E p,H p} and {E q,Hq}, with their associated
permittivity distributions εp and εq, one can use Maxwell’s equations to derive the
following identity known as Lorentz Reciprocity Theorem:

∫

∇ · (E p ×H ∗
q +E ∗

q ×H p)dx = −iωε0

∫

E ∗
q · (εp− εq)E p dx (7)
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FIGURE 2. Definition of the computational window
for the CMT implementation. The CMT equations are
integrated along the z-axis between zi and zo, over a
lateral interval extending from xl to xr. Input- and output
angles θi and θo are associated with the input and output
planes at zi and zo. The quantities ∆z, ∆l, ∆r serve to
specify the computational window (see Section 3).

Let ε be the permittivity distribution of the composite structure. Using Eq. (7) once with
{E ,H ,ε} and {E b,Hb,εb}, then with {E ,H ,ε} and {E s,H s,εs}, finally four times
with {E p,H p,εp} and {E q,Hq,εq}, p,q = b,s (the last step removes the z-derivatives
of the overlap integrals), we arrive at the coupled mode equations:

(

σbb σbs
σsb σss

)

d
dz

(

ab
as

)

=

(

cbb cbs
csb css

)(

ab
as

)

(8)

with power coupling coefficients σpq that are given by the overlap integrals

σpq =
〈

E p,H p|E q,Hq
〉

=
1
4

∫

e z ·
(

E q ×H ∗
p +E ∗

p ×Hq
)

dx (9)

(here e z is a unit vector along the z-axis), and with coupling coefficients

cpq = −i
ωε0

4

∫

E∗
p · (ε − εq)E q dx, p,q = b,s. (10)

Note that apart from σss and css all coefficients are z-dependent.
Solving the above system of ordinary differential equations using a numerical quadra-

ture rule for the integrals along x and a fourth order Runge Kutta scheme [12] for the
integration along z (see Figure 2), we obtain a linear relation

(

ab(zo)
as(zo)

)

=

(

Tbb Tbs
Tsb Tss

)(

ab(zi)
as(zi)

)

(11)

between the coupled mode amplitudes ap(zi) on an input plane zi and the amplitudes
ap(zo) on an output plane zo. Here T = (Tpq) is the propagation matrix of the coupler.
Due to the linearity of the problem, the procedure can be formulated for T directly.

2.1. Coupler scattering matrix
The theory outlined above yields the amplitudes of the complete ansatz fields, including
the exponential dependences on the propagation angle or the distance, respectively. In
order to properly relate the amplitudes of the modal profiles at the start and the end
of the computational window, the propagation matrix elements have to be adjusted to
compensate for phase velocities and decay constants.

Consider the setting as shown in Figure 2. The coupler is defined in the region [xl,xr]×
[zi,zo]. Outside this region, one assumes the interaction between the two waveguides to



be negligible. Two input and two output ports are identified, given by the external bend
or straight waveguide segments. Within these ports, the incoming or outgoing (electrical)
fields are

Ao
bE 0

b(r)e−iγbR(θ −θo), θ ≥ θo, Ao
s E 0

s (x)e−iβs(z− zo), z ≥ zo,

Ai
bE 0

b(r)e−iγbR(θ −θi), θ ≤ θi, Ai
sE 0

s (x)e−iβs(z− zi), z ≤ zi,
(12)

written as appropriate in cylindrical or Cartesian coordinates, with constant external
amplitudes Ai

p, Ao
p. Within the coupler region the field is given by the coupled mode

ansatz (1).
The abstract model of Ref. [5] requires a scattering matrix that relates the external

output amplitudes Ao
b, Ao

s of the mode profiles at z = zo to the external input amplitudes
Ai

b, Ai
s at z = zi. By matching the coupled and uncoupled fields at the interface planes of

the computational window, one obtains
(

Ao
b

Ao
s

)

=

(

S0
bb S0

bs
S0

sb S0
ss

)(

Ai
b

Ai
s

)

with S
0 = O

0
o T(O0

i )
−1 (13)

and
O

0
i =

(

e−iγbRθi 0
0 e−iβszi

)

, O
0
o =

(

e−iγbRθo 0
0 e−iβszo

)

(14)

for the relation between T and the (preliminary version of the) scattering matrix S0 =
(S0

pq) of the coupler.
As introduced so far, the elements of T and S0 are static quantities, defined for a fixed

computational window according to Figure 2. In order to assess the interaction between
the two waveguides, we consider the evolution T(z), S0(z) as obtained by applying
Eqs. (11), (14) to a series of computational windows with fixed lower boundary zi and
varying upper boundary at z ∈ [zi,zo]. Then |S0

ss(z)|
2 and |S0

bs(z)|
2 can be interpreted as

the local relative power fractions that are assigned to the field in the straight respectively
bent core, given a unit input in the straight waveguide at zi. Likewise |S0

sb(z)|
2 and

|S0
bb(z)|

2 are the local powers in the straight and bent cores for a unit input in the bent
waveguide at θi. Note that for the resonator description only the net effect of the entire
coupler, i.e. the scattering matrix S0 = S0(zo), is relevant.

2.2. Projection onto the straight waveguide mode
If the bend field radiates relatively heavily, it may take a long z-distance for the propaga-
tion and scattering matrix coefficients to stabilize; an oscillation may go on even beyond
the rim of the ring. An example of such an oscillatory behaviour is given in Figure 3.
These oscillations make the results seem untrustworthy; when the ring is sufficiently far
away, the power in the straight waveguide should not vary. However, despite the oscilla-
tion, plots of the combined field seem to indicate that the modal power is actually rather
constant already (see Figure 4), and that the fields are fairly close to those calculated by
FDTD.

This leads to the idea of not just using the propagation matrix elements for the
determination of the power transfer, but to consider the combined field and take the
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FIGURE 3. Evolution of the scattering matrix elements S0
pq and Spq (absolute squares) for a coupler

structure as defined in Figure 1, for a bend radius R = 30 µm and a narrow gap of width g = 0.1 µm.
The CMT computational window is adjusted as described in Section 3, with ∆z = 25, ∆l = 2 µm, and
∆r = 20 µm. Note that the curves display coefficients for the interaction of non-orthogonal, not necessarily
normalized basis fields.

FIGURE 4. Absolute value field plots of CMT (left) and FDTD (right) calculations for the structure
considered in Figure 3.

modal overlap with it, i.e. to project the total field onto the mode profile of the straight
waveguide. In fact, these integrals are available already in the formulation (8): σss is
the overlap of the straight waveguide mode with itself, and σsb is the overlap of the
straight waveguide mode with the bent waveguide mode. So, the corrected amplitude of
the mode in the waveguide is extracted as

As(z) =
(σsb

σss
ab(z)+as(z)

)

e−iβ z. (15)

It can be proven that the absolute value of this projected amplitude should become nearly
constant. Consider the following derivative:

dz (σsbab +σssas) = (σsbdzab +σssdzas +abdzσsb) . (16)

Note that the z-derivative of σss is zero since the straight waveguide mode overlap with
itself is constant. The first two terms on the right-hand side of Eq. (16) are equal to the



bottom line of the left-hand side of the coupled mode equations (8), and can thus be
replaced by the corresponding right-hand side. For the last term on the right-hand side,
we can use the theorem (7) as follows:

dzσsb =
1
4

∫

e z ·dz (E b ×H ∗
s +E ∗

s ×H b) dx

=
1
4

∫

∇ · (E b ×H ∗
s +E ∗

s ×H b) dx−
1
4

∫

e x ·dx (E b ×H∗
s +E ∗

s ×H b) dx

= −i
ωε0

4

∫

E ∗
s · (εb − εs)E b dx−

1
4

∫

e x ·dx (E b ×H ∗
s +E ∗

s ×Hb) dx

(17)

Here e x and e z are unit vectors along the x- and z-axes. Substituting Eq. (8) and Eq. (17)
into Eq. (16), we get:

dz (σsbab +σssas) = −i
ωε0

4

(

ab

∫

E∗
s · (ε − εs)E b dx+as

∫

E∗
s · (ε − εs)E s dx

)

−ab
1
4

∫

e x ·dx (E b ×H∗
s +E ∗

s ×H b) dx . (18)

Once the propagation is beyond the ring (ie, when z > R and ε = εs), or when the straight
waveguide field is negligible in the bend, the only term left on the right-hand side is the
last one, which reduces to a boundary term evaluated at the borders xl and xr of the
computational window. If the window is chosen large enough, the straight waveguide
field will be negligible here as well, so the whole right-hand side of Eq. (18) becomes
vanishingly small. Thus, the absolute value of As will tend to a constant value once the
bend core is far enough separated from the straight waveguide.

Eq. (15) leads to a modified recipe for translating the solution T of the coupled mode
equations to the (definite, improved version of the) scattering matrix S:

S = Oo TO
−1
i (19)

with

Oi =

(

e−iγbRθi 0
(σsb/σss)|zi e−iβszi

)

and Oo =

(

e−iγbRθo 0
(σsb/σss)|zo e−iβszo

)

(20)

Just as for S0, one can consider the evolution of S along z. Figure 3 includes correspond-
ing curves for all four coefficients. As predicted, Sss tends to a constant after the actual
coupling region, as does Ssb. This justifies the assumption of a limited interaction region
even for the present example with pronounced radiation.

So far we did not incorporate a projection for extracting the external bend mode
amplitude Ab. For a sufficiently large computational window, the profile of the straight
waveguide becomes negligible small in those regions of the radial port planes at θi and
θo where the major part of the bend mode profile is located. Then the requirement of a
continuous transition from the inner coupler region to the external field representation
around the bend core leads to the zero entries in the upper right corners of Oi and Oo.
The projection does not alter the corresponding coefficents Sbb = S0

bb and Sbs = S0
bs that

describe the power transfer to the bend mode. The scattering matrix includes the bend



mode losses (i.e. relates the amplitudes Ai
b and Ao

b of identical bend mode profiles at
θ = θi and θ = θo), consequently the curves for the evolution of Sbb and Sbs in Figure 3
exhibit a regular decay outside the the interaction region.

3. NUMERICAL RESULTS
As a reference for the perturbational simulations we use a Finite Difference Time Do-
main program developed in our group that is based on the simple second-order Yee’s
mesh approach [3]. It is capable of TE or TM calculations on arbitrary structures in
two spatial dimensions with (currently) real refractive indices and no dispersion. Per-
fectly matched layer (PML) boundary conditions border the rectangular computational
window. As startfields, either CW or pulsed fields can be launched from the edge or
from inside the computational window (using the so-called Total Field / Scattered Field
approach). The results can be analyzed by means of modal overlaps, other power calcu-
lations, or field plots. The present FDTD calculations use a uniform discretization with
a step size 0.05 µm in the x- and z-directions and a timestep of 1 ·10−16 s.

For the example system as defined in Figure 1, we perform calculations to assess the
validity of the CMT theory. In Section 3.1 the direct transmission along the straight
waveguide is compared between CMT and FDTD; Section 3.2 is concerned with the
reciprocity properties of the CMT approximation. The CMT computational window
zi =−∆z, zo = ∆z, xl =

√

(R−b−∆l)2 −∆2
z , xr = R+∆r (cf. Figure 2) is specified by the

length ∆z of half the interval along z and by radial and lateral borders ∆l and ∆r around the
extremal positions of the bend core interfaces. Default values for the present structures
are ∆l = 2.0 µm, ∆r = 20.0 µm, ∆z = R/2 if R ≤ 100 µm, otherwise ∆z = 60 µm.

3.1. Self coupling of the straight waveguide
In order to compare the CMT to the FDTD results, a quantity must be taken that may
be extracted from both methods. In the coupled mode theory, both the amplitudes in
the straight core and the bend can be determined. In the FDTD method, the amplitude
of the straight waveguide mode is determined by calculating the overlap integral of
the local field with the mode profile. Defining the amplitude in the bent waveguide,
however, is not quite as simple due to two reasons. Firstly, any overlap integrals are best
calculated along either a horizontal or vertical cross-section, so the only place would be
the horizontal line through the center of the ring. The fields are decoupled long before
this position though, so a lot of calculation is done in areas where nothing of interest
happens, unnecessarily increasing the computational effort. Secondly, since the bend
mode radiates, the field may extend outward from the ring very far, which makes overlap
integrals tricky to calculate unless the window is again made very large.

Another way to accurately estimate the straight-bend coupling coefficient is by con-
sidering a ring coupled to two parallel waveguides, one at the top and one at the bottom.
If one then allows a pulse to travel from the top waveguide through the ring for about
three quarters of a roundtrip, and measures the amplitude at the output of the lower
waveguide, the pulse has passed through two couplers (Sbs = Ssb, see Section 3.2). If
one knows the decay due to the radiation of the bend mode, the coupling coefficient is



 0.2  0.4  0.6  0.8  1.0  1.2  1.4  
0

 

0.2

 

0.4

 

0.6

 

0.8

 

1.0

g [µm] 

|S
ss

|2

FDTD

CMT

15

30
50

R = 100 µm

FIGURE 5. Amplitude |Ao
s |

2 =
|Sss|

2 of the straight waveguide
mode in the output plane of the
coupler structure for a unit exci-
tation in the straight waveguide,
calculated using both FDTD (cir-
cles) and CMT (lines). Param-
eters are as given in Figure 1,
for bend radii of 15, 30, 50 and
100 µm and a gap width g vary-
ing between 0.1 and 1.5 µm.

easy to calculate. However, a large calculation window is again needed, and the wave-
length dependence of the coupling coefficient would have to be taken into account.

Consequently the only element we will compare here is the self-coupling of the
straight waveguide. The structure of Figure 1 was considered for various radii and gaps.
Figure 5 shows the power in the straight guide at the coupler exit for both methods,
given a normalized input in the straight core. In our CMT formulation, this quantity
is represented by the coefficient |Sss|

2 of the coupler scattering matrix. One observes a
very good agreement for radii down to about 30 µm, even for quite small gaps, where,
due the violation of continuity conditions at the dielectric interfaces, the CMT approach
becomes somewhat questionable.

3.2. Reciprocity
If only reciprocal (linear nonmagnetic) materials are involved, the coefficent for the
transfer from one mode of one port waveguide of a system to the mode of another port
waveguide has to be the same as the coefficent for the transfer from the second port to the
first one [8, 5]. First, we will give an example of reciprocity in FDTD; then, reciprocity
will be checked for the coupled mode theory.

Figure 6 shows a straight waveguide coupled to a U-bend. This U-bend consists of
a half-circle directly connected to straight waveguides. A mode is first launched into
the top left-hand horizontal waveguide, and the power in the lower right-hand vertical
waveguide is calculated; then, a mode is launched into the lower right-hand waveguide
and the power in the top left-hand horizontal waveguide mode is calculated. Despite the
pictures looking very different, reciprocity is satisfied; the power transfer is 12.9% in
both cases.

If translated to our unidirectional coupler model, reciprocity (time reversal) and sym-
metry arguments as detailed in Ref. [5] require that the two complex offdiagonal (cou-
pling) coefficients Sbs and Ssb are identical. For the symmetry argument to hold, identical
mode profiles are to be used on the input and exit ports of the coupler, and the coupler
interfaces need to be positioned symmetrically with respect to the x-axis, as realized by
our choice of a symmetrical computational window. According to Figure 7, the approx-



FIGURE 6. Absolute value field plots of FDTD calculations on a straight waveguide coupled to a U-
bend with a radius of R = 15 µm and a gap g = 0.1 µm. In the left-hand picture, the fundamental mode
of the upper straight waveguide is launched; in the right-hand picture, the fundamental mode of the lower
right-hand straight waveguide is launched vertically upwards.
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imate coupled mode formulation implements the reciprocity property remarkably well,
at least what concerns the absolute value of the coupling coefficients. This applies even
to regimes of rather narrow gaps and small bend radii with pronounced radiation, where
one would have expected the inherent approximations to be invalid.

4. CONCLUSIONS
We have developed a coupled mode theory for the evanescent interaction between a
straight waveguide and a circularly curved waveguide or disc. By transforming the
bend mode profile, which is originally defined in cylindrical coordinates, to Cartesian
coordinates the modes of the two systems can be linked by means of “standard” coupled
mode theory. Since the mode of the bent waveguide is radiative, and thus has a complex
propagation constant, the propagation matrix is not directly equal to the scattering
matrix; apart from phase corrections the decay of the bend mode has to be taken into
account when the scattering matrix elements are determined from a solution of the



coupled mode equations.
Even when the bent and the straight cores are far apart, the overlap of the bend mode

with the straight waveguide mode is not negligible for highly radiative bends. This
causes the scattering matrix element related to the amplitude in the straight waveguide to
oscillate heavily when viewed as a function of the position of the computational window
borders. This applies also to extensions where one would have expected the interaction to
be negligible. By taking the overlap of the composite field with the straight waveguide
mode, this oscillation can be removed, yielding a constant amplitude of the straight
waveguide mode after the actual coupling region. Apparently it is not adequate to view
the CMT solution as an evolution of mode amplitudes along a propagation axis. One
should consider the total CMT field as an approximation of a solution of Maxwell’s
equations on the domain given by the computational window and access only the modal
amplitudes on the — more or less well defined — input and output ports.

Apart from the extent of the calculation window and the numerical evaluation of the
integrals, the only real approximation in this formalism is the ansatz field (1). This field
does not comply with Maxwell’s equations in the regions where the index of refraction
is different between the coupled structures due to a difference in phase velocity, and
due to the fact that the interface conditions at material interfaces are not satisfied. This
causes the CMT to fail for heavily radiating bend fields, which have a large amplitude in
the straight waveguide region, while it is valid for lightly radiating fields; these comply
with Maxwell’s equations better since the the individual fields are much more confined
to the area in which they are correct solutions. Even for small gaps, the fields of lightly
radiating bends are small in the straight guide and vice-versa, which makes the CMT
valid even for these cases.

Unfortunately, the variational principles behind the reciprocity techniques [8] do
not provide a direct means to assess the quality of an approximate solution, even if a
particular result is known to be optimal within the degrees of freedom incorporated in
the field ansatz. The present ansatz field contains only two modes; the formalism might
be improved, especially for highly radiative structures, by including higher-order modes
of the bent or straight waveguides, or by including radiation in some way. However,
comparison with FDTD fields shows that the two-mode ansatz describes the fields quite
well already.

Comparisons of the transmission and coupling coefficients between FDTD and CMT
calculations indicate that the CMT is indeed applicable for relatively heavily radiating
structures, and for a rather strong interaction in case of narrow core distances. In con-
clusion, the present formulation of coupled mode theory leads to a simple, fast, and
(unexpectedly) trustworthy tool for the simulation and design of coupler configurations
for ringresonator devices.
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