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ABSTRACT

DNA sequencing in  a  lab-on-a-chip aims at  providing cheap,  high-speed  analysis  of  low reagent  volumes to,  e.g.,
identify genomic deletions or insertions associated with genetic illnesses. Detecting single base-pair insertions/deletions
from DNA fragments in the diagnostically relevant range of 1501000 base-pairs requires a sizing accuracy of S < 10-3.
Here we demonstrate  S =  410-4.  A microfluidic chip was post-processed by femtosecond-laser writing of an optical
waveguide. 12 blue-labeled and 23 red-labeled DNA fragments were separated in size by capillary electrophoresis, each
set  excited  by  either  of  two  lasers  power-modulated  at  different  frequencies,  their  fluorescence  detected  by  a
photomultiplier, and blue/red signals distinguished by Fourier analysis. Different calibration strategies were tested: a) use
either set of DNA molecules as reference to calibrate the set-up and identify the base-pair sizes of the other set in the
same  flow experiment,  thereby  eliminating  variations  in  temperature,  wall-coating  and  sieving-gel  conditions,  and
actuation voltages; b) use the same molecular set as reference and sample with the same fluorescence label, flown in
consecutive experiments; c) perform cross-experiments based on different molecular sets with different labels, flown in
consecutive experiments. From the results we conclude: Applying quadratic instead of linear fit functions improves the
calibration accuracy. Blue-labeled molecules are separated with higher accuracy. The influence of dye label is higher
than fluctuations between two experiments. Choosing a single, suitable dye label combined with reference calibration
and  sample  investigation  in  consecutive  experiments  results  in  S =  410-4,  enabling  detection  of  single  base-pair
insertion/deletion in a lab-on-a-chip.
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1. INTRODUCTION

A lab on a chip [1-4] squeezes the functionalities of a biological/chemical laboratory onto a single substrate through a
network of  microfluidic  channels,  reservoirs,  valves,  pumps and  sensors.  Its  advantages are  speed of  analysis,  low
sample consumption, and measurement automation and standardization. Capillary electrophoresis (CE) is a powerful
method for biomolecule separation and analysis. The sorting and sizing of DNA molecules within the human genome
project [5] has been enabled largely by CE separation and analysis [6]. The human genome project has also lead to the
genetic  mapping of  various human illnesses  [7].  On-chip integration of  DNA sequencing [8-11] as  well  as  genetic
diagnostics [12,13] have become feasible.  Laser-induced fluorescence is the most popular microchip CE monitoring
technique, allowing a low limit of detection of 210 fM [14] using visible fluorescent dye labels.

Many attempts have been made to integrate micro-optical components in microfluidic labs on a chip to perform on-chip
optical detection [15-27]. In addition to the integration of optical waveguides, the use of the microfluidic channel itself as
a liquid-core optofluidic waveguide [25,26,28,29] has been explored. Integrated optical waveguides allow to confine and
transport  light  in  the  chip,  directing  it  to  a  small  volume  of  the  microfluidic  channel  and  collecting  the
emitted/transmitted light, as has recently been applied to monitor on-chip DNA sequencing using zero-mode waveguide
sensors [9,30] in a now commercialized DNA sequencer [11]. Among the different waveguide fabrication processes, the
technique  of  femtosecond  (fs-)  laser  writing  of  waveguides  in  glass  [31-43]  allows  for  simple  post-processing  of
commercial microfluidic chips.

In this contribution, we demonstrate CE-based DNA analysis in an optofluidic chip with sub-base-pair resolution of low
concentrations of permanently, exclusively end-labeled DNA molecules.



2. EXPERIMENTAL

A schematic of the commercial microfluidic chip (LioniX BV) [44] is displayed in Fig. 1. The microfluidic channel
network and reservoirs were patterned photolithographically and wet-etched in fused silica glass and then sealed off by
bonding another piece of fused silica glass on top. The chip has dimensions of 55 mm   5.5 mm   1 mm and the
microfluidic channels  have a cross-section of  ~110 µm width and ~50 µm depth [44].  The optical  waveguide was
inscribed  into the  bulk of  the  fused silica chip  by fs-laser  writing [40]  at  a  translation speed  of  20 µm/s,  using a
Ti:Sapphire  laser  operating at  800 nm wavelength with 150 fs,  4  µJ pulses  at  a  repetition rate  of  1  kHz [41-43].
Employing tunable, astigmatic beam shaping [39], an elliptical cross section of the written waveguide was obtained, with
a major diameter of ~50 µm in the vertical direction, while the minor diameter in the horizontal direction is ~12 µm in
order to retain a high spatial resolution along the direction of DNA migration and separation.

Figure 1. Schematic of the optofluidic chip [44] showing reservoirs 14, sample injection channel (reservoir 1  reservoir
2) and CE separation channel (reservoir 3  reservoir 4), as well as the integrated optical waveguide and detection window.

Application  of  a  high voltage  forced  the  analyte  molecules  to  migrate  into the  CE injection  channel  from sample
reservoir 1 to waste reservoir 2 (see Fig. 1). By switching the voltages at all four reservoirs simultaneously a well-
confined plug containing the mixture of analyte molecules – with a volume of ~605 picoliters at the crossing junction of
the two microfluidic channels – was injected into the CE separation channel, from the microfluidic crossing junction
toward waste reservoir 4, and the analyte molecules contained in the plug volume were separated according to their size
[45-48].

Two sets of DNA molecules with known base-pair sizes were permanently end-labeled with different dyes to identify
their origin. The 12 blue-labeled and 23 red-labeled DNA fragments were separated in size by microchip CE, each set
excited exclusively by either of two lasers power-modulated at different frequencies of 17 Hz and 31 Hz and launched
through the optical  waveguide,  their  fluorescence detected by a sensitive photomultiplier, and blue and red signals
distinguished by Fourier analysis [48,49]. The experiment was then repeated.

3. RESULTS AND DISCUSSION

The 12 blue-labeled DNA molecules exhibit a clearer temporal migration behavior, less deviation of individual DNA
molecules from this behavior, and the behavior is better reproduced in the second experiment. We fitted the data of
ln(Sbp) of the base-pair size Sbp as a function of time with a quadratic dependence.

We tested different calibration strategies for the dependence of migration time on base-pair size in a given experimental
situation: (a) use either set of DNA molecules as reference to calibrate the set-up and identify the base-pair sizes of the
other  set  in  the  same  flow  experiment;  (b)  use  the  same  molecular  set  as  reference  and  sample  with  the  same
fluorescence label, flown in consecutive experiments; (c) perform cross-experiments based on different molecular sets
with different labels, flown in consecutive experiments; (d) also self-calibration in the same experiment was analyzed.
Results of the analysis are displayed in Fig. 2.

From the analysis we conclude the following: (a) Applying quadratic instead of the usual linear fit functions improves
the accuracy of calibration. (b) Blue-labeled molecules are separated with higher accuracy than red-labeled molecules,
hence  different  dye  labels  influence  the  DNA flow  differently.  (c)  Different  dye  labels  affect  the  formation  and
microfluidic  flow  of  individual  DNA  plugs  more  severely  than  variations  between  consecutive  experiments.  (d)
Choosing a single,  suitable dye label,  combined with reference calibration and sample investigation in consecutive
experiments results in a sizing accuracy of S = 4  10-4, thereby enabling detection of single base-pair insertion/deletion
in a lab-on-a-chip.



Figure 2. Standard deviation of measured sample data.

4. SUMMARY

Choice of a suitable dye label, combined with reference calibration and sample investigation in consecutive experiments,
results in capillary electrophoretic separation  of fluorescent-labeled DNA molecules in the 1501000 base-pair range
with  sub-base-pair resolution, thereby enabling detection of single base-pair insertion/deletion in a lab-on-a-chip with
low reagent volumes in a few-minute experiment.
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