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Abstract This chapter discusses an ab-initio frequency-domain model of circular
microresonators, built on the physical notions that commonly enter the description
of the resonator functioning in terms of interaction between fields in the circular
cavity with the modes supported by the straight bus waveguides. Quantitative evalu-
ation of this abstract model requires propagation constants associated with the cav-
ity/bend segments, and scattering matrices, that represent the wave interaction in the
coupler regions. These quantities are obtained by an analytical (2-D) or numerical
(3-D) treatment of bent waveguides, along with spatial coupled mode theory (CMT)
for the couplers. The required CMT formulation is describedin detail. Also, quasi-
analytical approximations for fast and accurate computation of the resonator spectra
are discussed. The formalism discussed in this chapter provides valuable insight in
the functioning of the resonators, and it is suitable for practical device design.

2.1 Introduction

Resonances in optical microcavities are explored for a variety of applications [1, 2,
3]. Single or cascaded microresonators not only in the form of rings, disks, spheres,
but also in other forms like squares, rectangles, or flowerlike microgears (disks with
angularly periodically varying radii), and arranged in various configurations, led to a
multitude of interesting phenomena [4, 5]. In this chapter we focus on the most com-
mon microresonator configuration applied in integrated optics, consisting of a ring-
or disk-shaped cavity which is evanescently coupled to two parallel bus waveguides.

Quite frequently the functioning of these resonators is discussed on the basis of
a frequency domain model [6, 7, 8], where the interaction between the cavity and
the straight waveguides is represented in terms of scattering matrices for the coupler
regions. Interferometric resonances are established by segments of bent waveguides
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that connect these couplers. By treating the coupler scattering matrices and the bend
mode propagation constants associated with the cavity as free parameters, one can
estimate the response of the microresonators [9, 10, 11].

As a step beyond, one might try to solve the parametric model from first princi-
ples, i.e. calculate all parameter values for given geometry and material properties.
Although this is obviously essential for realistic device design, rather few ab-initio
studies of that kind exist so far. Initial attempts can be found in Refs. [12, 13, 14],
which differ with respect to the methods and approximationsthat are employed
to obtain the modal basis solutions for the curved cavity segments, and to predict
the interaction between the cavity and the bus waveguides. For the latter task, ap-
proaches based on coupled mode theory (CMT) [15, Secs. 1.4, 4.2.4], [16] are ap-
plied.

The CMT arguments in the former studies are basically derived for the interaction
of parallel straight waveguides, and can be extended to low loss cavities (typically
very large radius and/or high index contrast). But the situation is characteristically
different for cavity modes with non-negligible losses. It is possible to reformulate
the CMT approach to overcome the above shortcomings [17, 18]. The simulations
rely on frequency domain modal solutions for bent waveguides and curved inter-
faces on radially unbounded domains, which can be computed analytically for the
2-D setting [19]. In 3-D, numerical means have to be employed, like e.g. the film
mode matching method [20]. For given real frequency, these modal solutions have
complex angular propagation constants with a suitably fastdecay in the radial di-
rection [19], such that they can be conveniently used as basis fields in the frequency
domain coupled mode description. The coupled mode equations can be derived from
a variational principle [17] or by means of reciprocity techniques [21]. This leads
to an ab-initio frequency domain spatial CMT model of circular microresonators
which is a straightforward implementation of the conventional traveling wave mi-
croresonator viewpoint [8, 9].

Once facilities for determining bend mode propagation constants and coupler
scattering matrices are at hand, adaptation of the model to different configurations
should be relatively simple, requiring merely modifications in the initial analyti-
cal reasoning. This concerns e.g. cavity shapes with piecewise straight segments
(“racetrack” resonators [22]), resonators with only a single bus waveguide for reso-
nant phase shifting [23] or with perpendicular bus waveguide cores [24]. For cases
like the coupled optical resonator waveguides [25] where the intercavity coupling
needs to be taken into account, a CMT formalism as in Sec. 2.4 with bend modes
of the two cavities as basis fields would be required. Extension to larger compos-
ites with parallel coupled cavities [26, 27], serial configurations [26, 28], or even
mesh-like filters [24, 29, 30] should be straightforward by means of scattering ma-
trix operations, given the input-output characteristics of the single-cavity resonator
elements.

The present approach differs from models based on time domain modes for the
entire circular cavities [26, 31]. These are solutions withinteger angular mode num-
ber and complex eigen-frequency [12, 32]. Due to their radially growing fields, they
are not directly suitable for the frequency domain CMT framework. Therefore we
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use the frequency domain model of the bent waveguides as discussed in Sec. 2.3.
As these modal solutions have complex valued angular mode numbers, they do not
constitute valid solutions for the full rotationally symmetric cavities, and hence are
not useful to access directly the (complex) resonance frequencies of the isolated
cavities. Still, by taking into account their interaction with the straight waveguides,
one can construct approximate solutions for the system “cavity + bus waveguides”
at given wavelengths, and thereafter estimate resonance frequencies. It is possible
to translate between both viewpoints [12, 32].

Alternatively, rigorous numerical tools can be employed tomodel the resonators.
The most prominent among these are the finite difference timedomain (FDTD)
method [33, 34, 35], and its (discontinuous Galerkin) finite-element variants [36,
37, 38]. However, already in the 2-D setting these simulations turn out to be incon-
veniently time consuming; the computational effort required in 3-D is expected, at
least at present, to be prohibitive for practical design work. Integral equation meth-
ods are also applied for efficient analytical solutions of eigenvalue and scattering
problems for specific 2-D configurations of micro-ring and disk cavities [39, 40, 41].
Unfortunately, the extension to 3-D appears to be far from obvious.

In the subsequent sections, we discuss the coupled mode theory approach in de-
tail. Sec. 2.2 describes the “standard” resonator model formulated directly for multi-
modal cavities. Evaluation of the abstract equations requires propagation constants
of the relevant cavity modes, and the coupler scattering matrices. These quantities
are relatively easy to obtain in a 2-D setting, where also rigorous numerical data
suitable for reliable benchmarking is conveniently available. The 2-D configura-
tions might also be of interest as effective-index projections of actual 3-D structures
[13]. Therefore we first discuss in detail 2-D configurationsof bent waveguides in
Sec. 2.3 and couplers in Sec. 2.4. Numerical approaches for the efficient evaluation
of the resonator spectrum are presented in Sec. 2.5. In Sec. 2.6 these ingredients are
combined to simulate full 2-D microresonators; the extension to three spatial di-
mensions follows in Sec. 2.7. In both cases the CMT results are compared with data
from other independent numerical methods. Conclusions of the present analysis are
given in Sec. 2.8.

2.2 Analytical framework

Consider a microresonator consisting of a ring- or disk shaped dielectric cavity,
evanescently coupled to two parallel straight waveguides.In the laterally coupled
configuration (Fig. 2.1, left; a top view of a real 3-D device,also the 2-D setting
of Secs. 2.3–2.6), these waveguides are placed in thex-z-plane just as the cavity is,
whereas in the vertically coupled configuration (Fig. 2.1, right), they are positioned
at differenty levels. Each of these configurations has its own advantages and disad-
vantages [10].

We chose a frequency domain description, where a time-harmonic optical signal
∼ exp(iωt) of given real frequencyω corresponding to vacuum wavelengthλ is
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Fig. 2.1 The “standard” microresonator model : A laterally (a) or a vertically (b) coupled res-
onator is functionally decomposed into two bent-straight waveguide couplers (I) and (II), which
are interconnected by cavity segments of lengthsL andL̃ outside the couplers. Schematics for the
laterally coupled resonator (a): A cavity of radiusR, core refractive indexnc and widthwc is placed
between two straight waveguides with core refractive indexns and widthws, with gaps of width
g andg̃ between the cavity and the waveguides. The cladding refractive index isnb (Illustrations
taken from Ref.[17, 18]).

present everywhere. In line with the most common view on circular microcavities
[8, 9], the resonators are functionally divided into two bent-straight waveguide cou-
plers, which are connected to each other by segments of the cavity. Semi-infinite
pieces of straight waveguides constitute the external connections, where the letters
A, B, Ã, B̃ (external) and a, b, ã,b̃ (internal) denote the coupler ports.

Assume that the interaction between the optical waves in thecavity and in the bus
waveguides is negligible outside the coupler regions. Alsoassume that all transitions
inside the couplers are sufficiently adiabatic, such that back reflections do not play a
significant role for the resonator functioning. We further restrict the model to unidi-
rectional wave propagation, as indicated by the arrows in Fig. 2.1. Depending on the
specific configuration, these assumptions can be justified ornot; for the examples in
Secs. 2.6, 2.7 they appear to be adequate.

Suppose that the straight waveguides supportsNs guided modes with propagation
constantsβsq, q = 1, . . . ,Ns. For the cavity,Nb bend modes are taken into account.
Due to the curvature, their propagation constantsγbp = βbp− iαbp, p = 1, . . . ,Nb,
are complex valued [19]. Hereβbp andαbp are positive real valued quantities rep-
resenting phase constants and attenuation constants of thecavity modes. All these
modes are power normalized. Let the variablesAq, Bq, andap, bp, denote the di-
rectional amplitudes of the properly normalized ‘forward’propagating (clockwise
direction, cf. Fig. 2.1) basis modes in the respective coupler port planes, combined
into amplitude (column) vectorsA, B, anda, b.

Then the response of coupler (I) can be represented in terms of its scattering
matrix , which relates the amplitudes of the outgoing waves to the amplitudes of the
corresponding incoming modes as
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Here the superscripts− indicate the amplitudes of backward (anticlockwise) propa-
gating waves, and the zeroes implement the assumption of negligible back-reflections.
The entries of the submatricesSvw with v,w = b, s represent the ‘coupling’ from a
particlar mode of the waveguidew to a particular mode of the waveguidev.

A fundamental property of any linear circuit made of nonmagnetic materials is
that the transmission between any two ‘ports’ does not depend upon the propaga-
tion direction, i.e. the full scattering matrix of the reciprocal circuit is symmetric
[15, Sec. 1.3.2]. This argument even holds for circuits withattenuating materials,
in the presence of radiative losses, and irrespective of theparticular shape of the
connecting cores. It relies crucially on the precise definition of the ‘ports’ of the
circuit, where independent ports can be realized either by mode orthogonality or by
spatially well separated outlets.

Assuming that the above reciprocity requirements are satisfied for the bent-
straight waveguide couplers, one expects that the bidirectional coupler scattering
matrix is symmetric (as we shall see in Secs. 2.4.4, 2.4.5, Figs. 2.6–2.9, the numeri-
cal results give evidence that this is indeed the case). For the submatrices this implies
that the following equalities hold (T denotes the transpose):

Sbb = (S−
bb)

T, Ssb = (S−
bs)

T, Sbs = (S−
sb)

T, Sss= (S−
ss)

T. (2.2)

If coupler (I) is defined symmetrical with respect to the central planez= 0, and if
identical mode profiles are used for the incoming and outgoing fields, then one can
further expect the transmissions fromA to b to be equal to the transmission from
B− to a− [15, Sec. 1.3.2]. Similarly, the transmissions froma to B and fromb− to
A− are equal:

Sbs = S−
bs, Ssb = S−

sb. (2.3)

As a result of (2.2) and (2.3), also the unidirectional scattering matrix

S =

(

Sbb Sbs

Ssb Sss

)

(2.4)

associated with the clockwise propagation through coupler(I) is symmetric:

Sbs = (Ssb)
T, S−

bs = (S−
sb)

T. (2.5)

The physical interpretation of the above statements is that‘the coupling from the
straight waveguide to the cavity is equal to the coupling from the cavity bend to the
bus waveguide’.

A completely analogous reasoning applies to the second coupler, where the tilde
∼ identifies the mode amplitudesÃ, B̃, andã, b̃ at the port planes, and the unidirec-
tional scattering matrix̃S related to coupler (II), such that the coupler operation is
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Outside the coupler regions the bend modes are used for the description of the field
propagating in the cavity, with the angular / arc-length dependence given by their
propagation constants (cf. (2.20)). Hence the amplitudes at the entry and exit ports
of the connecting cavity segments are related to each other as

a = G b̃ and ã = G̃b, (2.7)

whereG andG̃ areNb×Nb diagonal matrices with entriesGp,p = exp(−iγbpL) and
G̃p,p = exp(−iγbpL̃), respectively, forp = 1, . . . ,Nb.

We are interested in the case where modal powersPIq = |Aq|
2 andPAq = |Ãq|

2

are given at the input port A and at the add portÃ of the resonator, and we need
to calculate the transmitted powerPTq = |Bq|

2 at port B and the backward dropped
powerPDq = |B̃q|

2 at portB̃. This is equivalent to solving the linear system estab-
lished by (2.6) and (2.7) forB andB̃ in terms ofA andÃ. Due to the linearity of the
device the restriction to an excitation in only one port, here port A, with no incoming
add-signal̃A = 0, is sufficient. Then one obtains

B = (SsbGS̃bbG̃Ω−1Sbs+Sss)A, B̃ = (S̃sbG̃Ω−1Sbs)A (2.8)

for amplitudes of the outgoing guided modes in the through- and drop-ports, and

b = Ω−1SbsA, b̃ = S̃bbG̃Ω−1SbsA (2.9)

for the internal mode amplitudes in the cavity, whereΩ = I−SbbGS̃bbG̃.
The spectral response of the resonator is found by computingthe transmitted

(PTq) and dropped (PDq) power for a series of wavelengths with the help of (2.8).
Resonances manifest as peaks inPDq along with simultaneous dips inPTq. The pro-
nounced wavelength dependence at the resonance is caused bythe “resonance de-
nominator”Ω . For further insight, consider (2.8) and (2.9) whenΩ is singular, i.e. it
has an eigenvalue zero, or, equivalently, whenSbbGS̃bbG̃ has a unit eigenvalue. This
corresponds to a cavity field which reproduces itself after propagating consecutively
along the right cavity segment, through coupler (II), alongthe left cavity segment,
and finally through coupler (I). The self-consistent reproduction of the cavity field
represents theresonance conditionin the present abstract multimode cavity model.

Practical evaluation of the — so far only parameterized — equations (2.8) and
(2.9) requires values for the phase and attenuation constantsγbp = βbp− iαbp of the
cavity modes, contained inG, G̃, and the scattering matricesS, S̃ of couplers (I) and
(II). Corresponding procedures will be the subject of the following sections, where
the concepts are first discussed in 2-D, then extended to the full 3-D setting.
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2.2.1 Monomodal resonators

For fully symmetric microresonators (i.e. identical couplers (I), (II), connected by
equal cavity segments ˜· = ·) with single mode cavity and bus cores, further eval-
uation of expressions (2.8) and (2.9) is fairly standard [8,9]. Let Sbb = |Sbb| eiϕ ,

Sss−SbsSsb/Sbb = ρ eiψ with ϕ , ρ andψ real. Then the dropped power is given by

PD = PI
|Ssb|

2|Sbs|
2e−αLext

1+ |Sbb|4e−2αLext−2|Sbb|2e−αLext cos(βLext−2ϕ)
, (2.10)

and the expression for the through power reads

PT = PI
|Sss|

2(1+ |Sbb|
2ρ2e−2αLext−2|Sbb|ρ e−αLext cos(βLext−ϕ −ψ))

1+ |Sbb|4e−2αLext−2|Sbb|2e−αLext cos(βLext−2ϕ)
. (2.11)

HereLext = L+ L̃ is the total length of those parts of the cavity which are not already
included in the couplers.β andα are the phase and attenuation constants of the
single relevant bend mode of the cavity.

In principle, all quantities in (2.10) and (2.11) are wavelength dependent. Hence
the rigorous way to determine the resonator spectrum would be to evaluate all rel-
evant quantities for a series of wavelengths. Some further insight, however, can be
obtained with the approximation that significant changes inthe drop and through
power, on a limited wavelength interval, originate exclusively from the cosine terms
in (2.10) and (2.11) that include the phase information (this term corresponds to the
resonance denominatorΩ in (2.8) and (2.9)).

To take into account some non-negligible lengthl of the cavity segments in the
coupler regions, write the phase term asβLext−2ϕ = βLcav−φ , whereLcav = 2πR
is the complete cavity length, andφ = 2β l +2ϕ (a corresponding procedure is also
applied to the phase term in the numerator of (2.11)). Further consider only the
wavelength dependence of the phase constantβ as it appears explicitly in the term
βLcav− φ . In this way, one incorporates the wavelength dependence ofthe phase
changeβLcav for the entire cavity, but disregards the wavelength dependence of the
phase changeφ that is introduced by the interaction with the port waveguides.

Resonances (i.e. maxima of the dropped power) are now characterized by singu-
larities in the denominators of (2.10), (2.11), which occurwhen cos(βLcav−φ) = 1,
i.e. when the total phase gain after after one cavity round trip is a multiple of 2π .
This leads to theresonance condition

β =
2mπ + φ

Lcav
=: βm, for integerm. (2.12)

For a resonant configuration, thedropped poweris given by

PD|β=βm = PI
|Ssb|

2|Sbs|
2e−αLext

(1−|Sbb|2e−αLext)2 . (2.13)
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Note that properly computed values ofSsb, Sbs andSbb already include the losses
along the parts of the cavity inside the couplers. ThereforeLext in (2.13) (and in
those places of (2.10), (2.11) where attenuation is concerned) must not be replaced
by Lcav.

For the present case of monomodal resonators, one can now derive the following
familiar expressions that characterize the resonances [8]. Here we only summarize
the results.

• The free spectral range (FSR)∆λ is defined as the wavelength difference be-
tween two successive maxima of the dropped power (or minima of the through
power) and is given by

∆λ ≈
λ 2

neffLcav

∣

∣

∣

∣

m
(2.14)

whereλ is the resonance wavelength of them-th order resonance, andneff =
λ βm/2π is the effective mode index of the cavity mode. Here we assumed that
the effective group index is equal to the effective index.

• The full width at half maximum (FWHM)2δλ measures the width of the reso-
nance peak at a level of half the resonance value, i.e. the sharpness of the peak.
For the resonance of orderm one obtains

2δλ =
λ 2

πLcavneff

∣

∣

∣

∣

m

(

1
|Sbb|

eαL/2−|Sbb|e−αL/2
)

. (2.15)

• The ratio of the FSR and the FWHM at a specific resonance is called thefinesse
F:

F =
∆λ
2δλ

= π
|Sbb|e−αL/2

1−|Sbb|2e−αL . (2.16)

• Thequality factor Qcan be viewed as the ability of the cavity to confine the field
in space or time, which determines the sharpness of the resonance peaks. It is
defined here1 as the ratio of the resonance wavelength to the FWHM

Q =
λ

2δλ
= π

neffLcav

λ
|Sbb|e−αL/2

1−|Sbb|2e−αL =
neffLcav

λ
F. (2.17)

Hence, for a circular resonator with radiusR and cavity lengthLcav = 2πR, one
obtainsQ = kRneffF for the relationship betweenQ and finesseF.

Again, one can improve the accuracy of the above expressionsby using the effective
group index of the cavity mode in place of the effective mode indexneff [8].

1 In the time domain, theQ factorQ = ω/(2δ ω) is defined as the ratio of the optical power stored
in the cavity to the cycle averaged power radiated out of the cavity [42]. The larger theQ factor,
the longer the optical field is trapped inside the cavity.
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2.3 Waveguiding along bent cores

An analytical description of bent slab waveguides is apparently well known [15,
Sec. 5.2.4], [43, 44], but seemingly hardly ever evaluated rigorously. Bessel- and
Hankel-functions of large complex order and large argumentare involved. Probably
this constitutes a major obstacle, such that most authors resorted to approximations.
However, by using uniform asymptotic expansions of the Bessel/Hankel functions,
we found that a quite rigorous analytic treatment of the problem is possible [19].

Consider a bent slab waveguide with they-axis as the axis of symmetry as shown
in Fig. 2.2. For the present 2-D treatment, all material properties and the electromag-
netic fields are assumed to be invariant in theydirection. Being specified by the radi-
ally dependent piecewise constant refractive indexn(r), the waveguide can be seen
as a structure that is homogeneous along the angular coordinateθ . Hence we choose
an ansatz for the bend modes with pure exponential dependence on the azimuthal
angle, where the (dimensionless) angular mode number is commonly written as a
productγR with a reasonably defined bend radiusR, such thatγ can be interpreted
as a propagation constant . Note that the definition of the bend radius (here the outer
rim, as in Fig. 2.2), and consequently the definition of the cavity size, is to some
degree arbitrary. The consequences of different choices ofRare explained in [19].

In the cylindrical coordinate system(r,y,θ ), solutions for the optical electric
field E and magnetic fieldH are sought in the functional form (in the usual complex
notation) of bend modes

(

E
H

)

(r,θ ,t) =

(

(Ẽr , Ẽy, Ẽθ )
(H̃r ,H̃y,H̃θ )

)

(r)ei(ωt−γRθ). (2.18)

The tilde indicates the mode profile,γ is the propagation constant of the bend mode.
Since the electromagnetic field propagating through the bent waveguide is lossy,γ =
β − iα is complex valued, whereβ andα are the real valued phase and attenuation
constants.

Fig. 2.2 2-D bent slab waveguide. The core of thick-
nessd and refractive indexnf is embedded between
an interior medium (‘substrate’) with refractive index
ns and an exterior medium (‘cladding’) with refrac-
tive index nc. The distance between the origin and
the outer rim of the bend defines the bend radiusR
(Illustration taken from Ref.[19]).

cs f

z

R

θ
0

x

r
n n

d

n

Inserting the ansatz (2.18) into the Maxwell curl equations, one obtains two de-
coupled sets of equations: one set for transverse electric (TE) waves with nonzero
components̃Ey, H̃r , andH̃θ , and a second set for transverse magnetic (TM) waves
with nonzero components̃Hy, Ẽr , andẼθ . Within radial intervals with constant re-
fractive indexn, the principal componentsφ = Ẽy (TE) or φ = H̃y (TM) satisfy a
Bessel equation
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∂ 2φ
∂ r2 +

1
r

∂φ
∂ r

+(n2k2−
γ2R2

r2 )φ = 0 (2.19)

of complex orderγR, wherek= 2π/λ is the given real valued vacuum wavenumber.
By solving (2.19) piecewise in radial intervals with constant refractive index, to-

gether with polarization dependent material interface conditions and suitable bound-
ary conditions atr → 0 (bounded solutions) and atr → ∞ (outgoing fields), one ob-
tains a dispersion equation (transverse resonance condition) for the bent waveguide.
For a given frequencyω , discrete values ofγ are to be identified as roots of this
equation in the complex plane, where we employed numerical means in the form of
a secant method. Bessel/Hankel functions with complex order are evaluated on the
basis of uniform asymptotic expansions [45].

The outcome is a set of complex bend mode propagation constants with accom-
panying complex mode profiles. The modes are labeled by the number of radial
minima in the absolute value of the principal component. Despite their oscillatory
behavior in the outer region, the bend modes can be rigorously power normalized
and they satisfy certain orthogonality conditions. We refer to Ref. [19] for further
details on the solver and on bend mode properties.

2.3.1 Bend modes

Fig. 2.3 illustrates results of the former procedures. For large bend radius, the bend
mode resembles closely the familiar, well confined mode of a symmetric straight
slab waveguide. Closer inspection reveals that the tail of the bent mode is protruding
more outwards into the cladding region than inwards into thesubstrate region. For
smaller bend radii, the confinement decreases and the relative level of the field in the
cladding grows, along with a shift of the absolute field maximum towards the outer
rim of the core. With increasing bend radius one observes an almost exponential
decrease of the attenuation constant, whereas the phase constant of the bent mode
approaches the phase constant of the corresponding straight waveguide mode [19].

The effect of ‘bending’ and the lossy nature of the bend modesare illustrated
best by the snapshots of the physical fields in the second row of Fig. 2.3. For the
bent waveguide withR = 3µm, the radiative tails of the field in the cladding are
clearly visible. Just as for straight configurations, the confinement of bend modes
depends upon the refractive index contrast; for sufficiently wide waveguides, higher
order modes can be supported [19].

2.3.2 Whispering gallery modes

If the core width of a bent waveguide with sufficient curvature is increased, a regime
can be reached where the modes are guided by just the outer dielectric interface,
while the precise location of the interior interface becomes irrelevant. The model of
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Fig. 2.3 TE0 mode profiles for bent waveguides with(ns,nf ,nc) = (1.0,1.5,1.0), d = 0.5µm,
λ = 1.05µm for bend radiiR = 10,5,3µm. First row: radial dependence of the absolute value
of the basic electric field componentẼy. The profiles are power normalized, with the global phase
adjusted such that̃Ey(R) is real and positive. Second row: snapshots of the propagating bend modes
according to (2.18). The gray scales correspond to the levels of the real, physical fieldEy. nneff =
γ/k are 1.3232− i 6.4517·10−11, 1.2930− i 7.5205·10−6 , 1.2576− i 6.8765·10−4 resp.

Sec. 2.3 also covers such configurations with the formal choicens = nf in Fig. 2.2.
The solutions are called whispering gallery modes (WGMs). Fig. 2.4 illustrates the
first four lowest order WGMs that are supported by a structurewith the parameters
of the previous bent waveguide segments, where the interiorhas been filled with the
core material. While the fundamental field TE0 is well confined to the waveguide,
the higher order modes spread far beyond the core. Although these modes attenuate
fast, we shall see in Sec. 2.6.2 that they can influence the response of a resonator
with a cavity made up of the present bend segments.
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Fig. 2.4 TE polarized whispering gallery modes; the plots show the absolute value|Ẽy| of the
radial mode profile (top) and snapshots of the propagating physical fieldEy (bottom). The effective
mode indicesγ j/k for bend radiusR= 5µm are 1.32793− i 9.531·10−7 (TE0), 1.16931− i 4.032·
10−4 (TE1), 1.04222− i 5.741·10−3 (TE2), and 0.92474− i1.313·10−2 (TE3), for λ = 1.05µm.
All modes are power normalized.
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2.4 Bent-straight waveguide couplers

Capitalizing on the availability of analytical bend modes,we now proceed to the
coupler regions. One of the many variants of coupled mode theory (CMT) [15, Secs.
1.4, 4.2.4], [16] will be applied here to model the interaction of the optical waves.
The formulation takes into account that multiple modes in each of the cores may
turn out to be relevant for the functioning of the resonators[17].

Consider the coupler configuration shown in Fig. 2.5(a). Thebasis fields for the
CMT description are the time-harmonic modal solutions associated with the iso-
lated bent (b) and straight cores (c). In line with the assumptions of Sec. 2.2 only
forward propagating modes are considered, where for convenience we choose the
z-axis of the Cartesian system as introduced in Fig. 2.5 as thecommon propagation
coordinate for all fields.
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Fig. 2.5 The bent-straight waveguide coupler configuration (a), coupler (I) of Fig. 2.1. The in-
teraction between the modal fields supported by the bent and straight cores is restricted to the
computational window[xl ,xr]× [zi ,zo]. Inside this region the optical field is represented as a lin-
ear combination of the modal fields of the bent waveguide (b) and of the straight waveguide (c)
(Illustrations taken from Ref. [17]).

Let Ebp, Hbp, andεb represent the modal electric fields, magnetic fields, and the
spatial distribution of the relative permittivity of the bent waveguide. For the CMT
formalism, the bend mode field ansatz (2.18) in the polar coordinates is expressed
in the Cartesianx-z-system, such that the basis fields for the cavity read

(

Ebp

Hbp

)

(x,z) =

(

Ẽbp

H̃bp

)

(r(x,z))e−iγbpRθ(x,z). (2.20)

HereẼbp andH̃bp are the radial dependent electric and magnetic parts of the mode
profiles;γbp are complex valued propagation constants. Consistent withthe defini-
tion in Sec. 2.3, the bend radiusR indicates the position of the outer curved interface
(Fig. 2.5).

Similarly, Esq, Hsq, andεs denote the modal fields and the relative permittivity
associated with the straight waveguide, which are given by

(

Esq

Hsq

)

(x,z) =

(

Ẽsq

H̃sq

)

(x)e−iβsqz. (2.21)
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Here positive propagation constantsβsq characterize the phase changes with the
propagation along thez-direction.

Now the total optical fieldE, H inside the coupler region is approximated by a
linear combination of the modal basis fields (2.20) and (2.21) as

(

E
H

)

(x,z) = ∑
v=b,s

Nv

∑
i=1

Cvi(z)

(

Evi

Hvi

)

(x,z), (2.22)

with a priori unknown amplitudesCvi that are allowed to vary with the propagation
coordinatez. For ease of notation, these amplitudes are combined into amplitude
vectorsC = (Cb,Cs) = ((Cbi),(Csi)). The governing equation forC is derived using
a variational principle. Unlike e.g. in Ref. [12], here no ‘phase matching’ arguments
appear2. Via the transformation(r,θ ) → (x,z), the tilt of the wave front of the bend
modes (2.20) is explicitly taken into account.

2.4.1 Coupled mode equations

Consider the functional

F (E,H) =
∫∫

[(∇×E) ·H∗− (∇×H) ·E∗ + iωµH ·H∗ + iωε0εE ·E∗] dxdz,

(2.23)
a 2-D restriction of the 3-D functional given in Ref. [15, Sec. 1.5.6, Eqn.(1.98)]. For
the present 2-D setting, the above curl operators are interpreted with the conven-
tion of vanishing derivatives∂y = 0. The Maxwell equations∇×E = −iωµH, and
∇×H = iωε0εE form a necessary condition for stationarity ofF with respect to
variations of(E,H).

By inserting the trial field (2.22) into the functional (2.23), we restrictF to the
fields allowed by the coupled mode ansatz. For the ‘optimal’ solution of the curl
equations in the form of the field (2.22), the variation ofF (C) is required to vanish
for arbitrary variationsδC. Disregarding boundary terms, the first variations ofF

at C in the directionsδCw j, for j=1, . . . ,Nw and w=b,s, are

δF =

∫

∑
v=b,s

Nv

∑
i=1

{

Mvi,w j
dCvi

dz
−Fvi,w jCvi

}

δC∗
w j dz−c.c. (2.24)

wherec.c. indicates the complex conjugate of the preceding integrated term,

Mvi,w j =

∫

az ·
(

Evi ×H∗
w j + E∗

w j ×Hvi

)

dx, (2.25)

Fvi,w j = −iωε0

∫

(ε − εv)Evi ·E
∗
w j dx, (2.26)

2 The arbitrariness in the choice ofRrenders the actual value ofγ virtually meaningless [19]. Only
the productγR is relevant.
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and whereaz is the unit vector in thez-direction. Consequently, one arrives at the
coupled mode equations

∑
v=b,s

Nv

∑
i=1

Mvi,w j
dCvi

dz
− ∑

v=b,s

Nv

∑
i=1

Fvi,w j Cvi = 0, for j = 1, . . . ,Nw, andw = b,s, (2.27)

as a necessary condition forF to become stationary for arbitrary variationsδCw j.
The same expression is obtained from the complex conjugate part of (2.24). One can
alternatively derive these coupled mode equations by meansof a reciprocity identity
[15, Sec. 4.3]. In matrix notation, (2.27) read

M(z)
dC
dz

(z) = F(z)C(z). (2.28)

Due to the functional form of the bend modes and the varying distance between the
bent and straight cores, the coefficientsM, F arez-dependent. For explicit represen-
tations of these equations in the single mode caseNb = Ns = 1, see Ref. [8].

2.4.2 Coupler scattering matrices

In practice we solve the coupled mode equations numerically. The solution can be
represented in terms of a transfer matrixT (cf. Sec. 2.4.3) that relates the CMT
amplitudes at the output planez= zo to the amplitudes at the input planez= zi of
the coupler as

C(zo) = TC(zi). (2.29)

We still need to relate the transfer matrix, obtained directly as the solution of the
coupled mode equations on the limited computational window, to the coupler scat-
tering matrix as required for the abstract model of Sec. 2.2.

Outside the coupler region[xl ,xr]× [zi ,zo], it is assumed that the interaction be-
tween the fields associated with the bent waveguide and the straight waveguide is
negligible. In this region, the individual modes propagating undisturbed with the
harmonic dependences on the respective propagation coordinates are given by

ap

(

Ẽbp

H̃bp

)

e−iγbpR(θ−θi) for θ ≤ θi , Aq

(

Ẽsq

H̃sq

)

e−iβsq(z−zi) for z≤ zi ,

bp

(

Ẽbp

H̃bp

)

e−iγbpR(θ−θo) for θ ≥ θo, Bq

(

Ẽsq

H̃sq

)

e−iβsq(z−zo) for z≥ zo.(2.30)

Hereap, Aq andbp, Bq are the constant external mode amplitudes at the input and
output ports of the coupler, as introduced in Sec. 2.2. The coordinate offsetszi , θi

andzo, θo are as defined in Fig. 2.5.
Because of the assumption of vanishing external interaction, it is expected that

outside the coupler the modes of straight waveguide propagate with constant am-
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plitudes (with suitable phase changes). While the modes of the straight waveguide
are typically well confined, the leaky bend modes may extend far beyond the bend
waveguide, even reaching the region of the straight waveguide core. This affects in-
trinsically the way the CMT adjusts the amplitudesCs(zo) in (2.29). The physical
field around the exit planes of the CMT window consists of a superposition of the
outgoing guided modes of the straight waveguide and a non-guided part due to the
leaky bent modes. To extract the required external amplitudesAq, Bq, we therefore
project the total coupled field on the modes of the straight waveguide. Exploiting
their orthogonality properties, the projection at the coupler output planez= zo yields

Bqexp(iβsqz) = Csq +
Nb

∑
p=1

Cbp
Mbp,sq

Msq,sq
, (2.31)

where the mode overlapsMmi,n j occur already in the coupled mode equations (2.28).
A similar procedure is applied to relate the coefficientsAq to the amplitudesCsq at
z= zi . There is no need of such a projection for the external bend mode amplitudes,
since the field strengths of the straight waveguide modes is usually negligible in
the respective angular planes, where the major part of the bend mode profiles is
located. Here merely factors are introduced to adjust for the offsets of the angular
coordinates in (2.30).

Thus, given the solution (2.29) of the coupled mode equations in the form of the
transfer matrixT, the scattering matrixS that relates the amplitudesap, bp, Aq, Bq

of the external fields as required in (2.6) is

S = QTP−1, (2.32)

whereP andQ are (Nb + Ns)× (Nb + Ns) matrices with diagonal entriesPp,p =
exp(−iγbpRθi) andQp,p = exp(−iγbpRθo), for p = 1, . . . ,Nb, followed by the en-
triesPq+Nb,q+Nb = exp(−iβsqzi) andQq+Nb,q+Nb = exp(−iβsqzo), for q = 1, . . . ,Ns.
A lower left block is filled with elementsPq+Nb,p = Mbp,sq/Msq,sq

∣

∣

z=zi
andQq+Nb,p =

Mbp,sq/Msq,sq
∣

∣

z=zo
, for q= 1, . . . ,Ns andp= 1, . . . ,Nb, respectively, that incorporate

the projections. All other coefficients ofP andQ are zero.
Indeed, as observed in Secs. 2.4.4 and 2.4.5, the projected amplitudes|Bq|

2 (or
the related scattering matrix elements|Ssq,w j|

2) become stationary, when viewed as
a function of the exit port positionzo, while at the same time the associated CMT
solution|Csq(z)|2 (or the elements|Tsq,w j|

2 of the transfer matrix) exhibit an oscilla-
tory behavior. Still, in the sense of the projections one canspeak of ‘non-interacting,
decoupled’ fields. This justifies the restriction of the computational window toz-
intervals where the elements ofS (not necessarily ofT) attain constant absolute
values around the input and output planes.



16 K. Hiremath and M. Hammer

2.4.3 Remarks on the numerical procedures

Eq. (2.28) is solved numerically on a rectangular computational window[xl ,xr]×
[zi ,zo] as shown in Fig. 2.5. For givenz, the integrals (2.25) and (2.26) are numeri-
cally computed by the trapezoidal rule [46] using a uniform discretization of[xl ,xr]
into intervals of lengthhx.

Subsequently, a standard fourth order Runge-Kutta scheme [46] is applied to
solve the coupled mode equations over the computational domain [zi ,zo], which is
split into intervals of equal lengthhz. Exploiting the linearity of (2.28), the procedure
is formulated directly for the transfer matrixT, which gives

dT
dz

(z) = M(z)−1 F(z)T(z) (2.33)

with initial condition T(zi) = I, whereI is the identity matrix, such thatC(z) =
T(z)C(zi). While the evaluation of the resonator properties via (2.32) and (2.8), (2.9)
requires only the solutionT = T(zo) at the coupler output planez= zo, examination
of the evolutions ofT(z) andS(z) turns out to be instructive.

2.4.4 Couplers with monomodal bent waveguide

Consider bent-straight waveguide couplers formed by straight and circularly bent
cores of widthsws = 0.4µm andwc = 0.5µm with refractive indexnc = ns = 1.5,
embedded in a background with refractive indexnb = 1. The bend radiusR and the
distanceg between the cores are varied. The CMT simulations are carried out on
a computational window of[xl ,xr]× [zi ,zo] = [0,R+10] µm× [−R+1,R−1] µm,
if R≤ 5 µm, otherwise on a window of[xl ,xr]× [zi ,zo] = [R− 5,R+ 10] µm×
[−8,8] µm, discretized with step sizes ofhx = 0.005µm andhz = 0.1µm.

First we look at the interaction of waves for vacuum wavelength λ = 1.05µm
and bend radiusR= 5µm. For this setting both constituent waveguides are single
modal, with propagation constantsγ/k= 1.29297− i7.5205·10−6 for the TE0 bend
mode, andβ/k = 1.3137 for the straight waveguide. The CMT analysis generates
2×2 transfer matricesT and scattering matricesS that can be viewed as beingz-
dependent in the sense as discussed for 2.33. Fig. 2.6 shows the evolution of the
matrix elements with the positionz= zo of the coupler output plane.

The matrix elementsTo,i andSo,i relate the amplitudes of an input modei to an
output modeo. Thus for the present normalized modes the absolute squarescan be
viewed as the relative fractions of optical power transferred from modei at the input
planez= zi to modeo at the output planez= zo. After an initial interval, where these
quantities remain stationary, one observes variations around the central planez= 0,
which correspond to the interaction of the waves. Here the mutually nonorthogonal
basis fields are strongly overlapping; it is therefore not surprising that the levels of
specific components of|To,i |

2 and|So,i |
2 exceed 1 in this interval.
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Fig. 2.6 Elements of the
TE transfer matrixT and
scattering matrixS as a
function of the output plane
position zo, for couplers
as introduced in Sec. 2.4.4
with R = 5µm and g =
0.2µm, at λ = 1.05µm
(Illustrations taken from
Ref. [17]).
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After the region of strongest interaction, near the end of the z-computational in-
terval, one finds that the elements|Tb0,i |

2 that map to the bend mode amplitude be-
come stationary again, while the elements|Ts0,i |

2 related to the output to the straight
mode still show an oscillatory behavior. This is due to the interference effects as ex-
plained in Sec. 2.4.2. The proper amplitudes of the modes of the bus channel can
be extracted by applying the projection operation (2.31); the corresponding matrix
elements|Ss0,i |

2 attain stationary values, such that the ‘coupling strength’ predicted
for the involved modes does not depend on the position of the coupler output plane.

The final scattering matrixS that enters the relations (2.8) and (2.9) should be
considered a static quantity, computed for the fixed computational interval[zi ,zo].
From the design point of view, one is interested in the elements of this matrix (the
‘coupling coefficients’) as a function of the resonator / coupler design parameters.
Fig. 2.7 summarizes the variation ofS with the width of the coupler gap, for a series
of different bend radii.

Fig. 2.7 Scattering ma-
trix elements |So,i|

2 ver-
sus the gap widthg, for
couplers as considered in
Sec. 2.4.4 with cavity radii
R = 3,5,10,15µm, for TE
polarized waves atλ =
1.05µm (Illustrations taken
from Ref. [17]).
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For all radii, one observes that for large gap widths, the non-interacting fields
lead to curves that are constant at levels of unity for|Ss0,s0|

2 (full transmission along
the straight waveguide), moderately below unity for|Sb0,b0|

2 (due to the attenuation
of the isolated bend mode), and zero for|Sb0,s0|

2 and |Ss0,b0|
2 (decoupled fields).

As the gap width decreases, the growing interaction betweenthe modes in the two
cores increases the cross coupling|Sb0,s0|

2, |Ss0,b0|
2 and decreases the self coupling

|Ss0,s0|
2, |Sb0,b0|

2. This continues until a maximum level of power transfer is attained
(where the level should depend on the ‘phase mismatch’ between the basis fields,
though a highly questionable notion in case of the bend modes[19]). If the gap is



18 K. Hiremath and M. Hammer

further reduced, the cross coupling coefficients decrease,even if the strength of the
interaction is increased. This is due to ‘forth and back coupling’, where along the
propagation axis a major part of the optical power is first transferred completely
from the input channel to the adjacent waveguide, then back to the input core [47].
Therefore one should distinguish clearly between the magnitudes of the coefficients
(2.26) in the differential equations that govern the coupling process, and the solution
of these equations for a finite interval, the net effect of thecoupler, represented by
the scattering matrixS.

For the symmetric computational setting used for the simulations in Figs. 2.6 and
2.7, the reciprocity requirement, i.e. the symmetry ofS (see Sec. 2.2) is satisfied
appropriately. In Fig. 2.6, the curves related to|Ss0,b0|

2 and |Sb0,s0|
2 end in nearly

the same level atz= zo. One observes some deviations for configurations with very
small bend radii and gaps close to zero. For such extreme cases, the underlying
ansatz (2.22) of CMT may not be valid. Otherwise the symmetryof the scattering
matrices provides a useful means to assess the accuracy of the CMT simulations,
beyond merely the power balance constraint.

2.4.5 Couplers with multimodal cavity segments

Next we consider couplers that consist of a straight waveguide close to a single bent
interface that supports a range of WGMs. A parameter set similar to Sec. 2.4.4 is
adopted, withnc = ns = 1.5, nb = 1.0, R= 5µm, ws = 0.4µm, andg = 0.2µm, for
a reference wavelengthλ = 1.05µm. A few WGMs supported by the curved inter-
face are illustrated in Fig. 2.4. The CMT analysis is carriedout on a computational
window [xl ,xr] = [0,15]µm, [zi ,zo] = [−4,4]µm with large extent in the (radial)x-
direction, in order to capture the radiative parts of the lossy higher order bend fields.
Step sizes for the numerical integrations arehx = 0.005µm, hz = 0.1µm, as before.

It is not a priori evident how many basis fields are required for a particular sim-
ulation. Fig. 2.8 shows the effect of the inclusion of the higher order WGMs on the
evolution of the primary coefficients of the matrixS. The self coupling coefficient
|Sb0,b0|

2 of the fundamental bend field is hardly influenced at all, and there is only
a minor effect on the cross coupling coefficients|Ss0,b0|

2 and|Sb0,s0|
2. But the self

coupling coefficient|Ss0,s0|
2 of the straight mode is reduced by a substantial amount

with the inclusion of the first order bend mode, due to the additional coupling to that
basis field. Apparently, for the present structure it is sufficient to take just the two
or three lowest order bend modes into account. This is one of the advantages of the
CMT approach, where one can precisely analyze the significance of the individual
basis modes (cf. the comments in Sec. 2.6.2).

With three cavity fields and the mode of the straight waveguide, the CMT sim-
ulations lead to 4×4 coupler transfer and scattering matrices. The evolution of the
16 matrix elements follows similar qualitative trends as inFig. 2.6, albeit with ad-
ditional intricacy due to the multimodal cavity [17]. It turns out that, for the present
case, the coupling between the bend modes themselves is practically negligible. Ac-
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Fig. 2.8 Effect of the inclusion of higher order bend modes on the evolution of the scattering
matrix for the multimode coupler of Sec. 2.4.5. Results for TE waves with one (dashed line), two
(dash-dotted line), three (solid line), and four cavity modes (dotted line) taken into account (Illus-
trations taken from Ref. [17]).

cording to Fig. 2.9, the elements of the scattering matrix exhibit a similar variation
with the gap width as found for the former monomode couplers (cf. Fig. 2.7). With
growing separation the cross coupling coefficients tend to zero. The constant levels
attained by the self coupling coefficients of the bend modes are determined by the
power the respective mode loses in traversing the computational window. Also here,
with the exception of configurations with almost closed gap,we see in the central
and right plots that the cross coupling coefficients with reversed indices coincide,
i.e. the simulations obey reciprocity.
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Fig. 2.9 Scattering matrix elements|So,i |
2 versus the gap widthg for the couplers of Sec. 2.4.5.

The CMT simulations are based on three WGMs (indices b0, b1, b2) and on the field of the straight
waveguide (index s0) (Illustrations taken from Ref. [17]).

2.5 Spectrum evaluation

Having access to the bend mode propagation constants and thecoupler scattering
matrices, (2.8) permit to compute the resonator response. This can be done in several
ways with adequate efficiency.

• Direct method:In principle the spectral response can be obtained by repeating
all calculations for a series of wavelengths. This requiresrecalculating the bend
mode propagation constants and scattering matrices.

• Interpolation of reduced scattering matrices:A substantial computational over-
head can be avoided, if one calculates the relevant quantities merely for a few
distant wavelengths, and then interpolates between these values. The interpola-
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tion procedure, however, should be applied to quantities that vary slowly with the
wavelength.
In line with the reasoning at the end of Sec. 2.2.1, one expects that the wavelength
dependence of the transmission is determined mainly by the phase gain along the
cavity, which is caused by a comparably slow wavelength dependence of the
bend mode propagation constantsγbp, but multiplied by the cavity lengthsL, L̃.
If a substantial part of the cavity is already covered by the couplers, then the
matricesS exhibit fast phase oscillations with the wavelength, such that S is
not directly suitable for interpolation [47]. The coupled wave interaction might
introduce additional slow wavelength dependence.
To separate the two scales inS, divide by the exponentials that correspond to the
undisturbed wave propagation. This gives the reduced scattering matrix

S′ = Q0 S(P0)
−1

. (2.34)

HereP0 andQ0 are diagonal matrices with entriesP0
j , j andQ0

j , j as defined forP
andQ in (2.32). Formally, one can viewS′ as the scattering matrix of a coupler
with zero length, where the interaction takes place instantaneously atz= 0. This
modification ofS, applied analogously tõS, is compensated by redefining the
lengths of the external cavity segments asL′ = L̃′ = πR, by changing the matrices
G andG̃ accordingly, and, where necessary, by taking into account the altered
phase relations on the external straight segments.
After these modifications, the new matricesG′ andG̃′ capture the phase gains of
the cavity fields along the full circumference. These show only slow wavelength
dependence, just asS′ and S̃′, such that they can be successfully interpolated
[47].

• Assumption of a constant scattering matrix:As an extreme variant of the former
approximation, (2.8) are evaluated with the scattering matrix for a central refer-
ence wavelength, together with rigorously computed or interpolated cavity mode
propagation constants.

2.6 Circular microresonators in two spatial dimensions

The ingredients discussed so far are now combined into a simulation tool for en-
tire resonator structures. We compare the results of the CMTapproach with finite-
difference-time-domain (FDTD) simulations based on a second order Yee mesh with
total field/scattered field formulation and artificial transparent (perfectly matched
layer, PML) boundary conditions [17, 48]. While the presentexamples consider
exclusively TE polarized fields, the abstract reasoning in Sec. 2.2 and the CMT for-
malism in Sec. 2.4 are just as well applicable for TM polarization [17].
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2.6.1 Microring

We consider the symmetric ring resonator with monomode cavity made up of the
couplers of Sec. 2.4.4. In line with the assumptions leadingto (2.8) and (2.9), the
fundamental mode of the bus waveguides is launched at the input port with unit
power, with no incoming field at the add port. Fig. 2.10 shows the spectral response
for parametersnc = ns = 1.5, nb = 1.0, wc = 0.5µm, ws = 0.4µm, R= 5µm, g =
g̃ = 0.2µm, in a wavelength interval around the former arbitrarily chosen design
wavelengthλ = 1.05µm. The further computational setting is as given for Fig. 2.6.
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Fig. 2.10 Relative transmitted powerPT and dropped powerPD versus the wavelength for a ring
resonator as discussed in Sec. 2.6.1; Left: CMT and FDTD results. Center: CMT results with spec-
trum evaluation by the direct and by the interpolation method with nodal wavelengths 1.015µm
and 1.085µm (linear), or 1.015µm, 1.05µm, and 1.085µm (quadratic interpolation). Right: Spec-
trum evaluation by the direct and the constant scattering matrix method (Illustrations taken from
Ref. [17]).

One observes the familiar ring resonator resonance patternwith dips in the trans-
mitted power and peaks in the dropped intensity. According to Fig. 2.7, the present
parameter set specifies configurations with rather strong interaction in the coupler
regions (|Sb0,s0|

2 = 30%), such that the resonances are relatively wide, with a sub-
stantial amount of optical power being directly transferred to the drop port also in
off-resonant states.

The CMT results are compared with FDTD simulations (for numerical details,
see Ref. [17]). As seen in the left plot of Fig. 2.10, we find an excellent agreement
between the CMT and the FDTD results for TE polarization (though one observes
minor deviations for the TM case, where the fields are discontinuous [17]). Even
in the present 2-D setting, these FDTD calculations typically require a computation
time of several hours, while the CMT analysis (with interpolation) delivers the entire
spectrum in just a few minutes.

The central plot of Fig. 2.10 shows the resonator spectrum asobtained by inter-
polating bend mode propagation constants and CMT scattering matrices for only
two (linear interpolation) or three (quadratic interpolation) distinct wavelengths, ac-
cording to Sec. 2.5. While small deviations remain for the linear approximation, on
the scale of the figure the curves related to quadratic interpolation are hardly dis-
tinguishable from the direct CMT results. The right-most plot of Fig. 2.10 shows
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that the assumption of a constant scattering matrix is perfectly reasonable for the
current setting. Minor deviations appear only far from the reference wavelength.
Thus the interpolation approach provides a very effective means to predict accu-
rately the resonator spectrum, in particular if narrow dips/ peaks in the responses of
high-quality resonators have to be resolved, such that the direct evaluation would be
computationally expensive. We shall exploit this later on for the 3-D simulations.

The principal field components for off-resonance and resonant configurations
are illustrated in Fig. 2.11. In the off-resonance state oneobserves the large through
transmission and small amplitudes of the waves in the drop-port along with minor
wave amplitudes in the cavity. At the resonances, the straight transmission is almost
suppressed. A major part of the input power arrives at the drop-port, and the leaky
nature of the ring mode can be clearly observed.

Fig. 2.11 CMT results for
the microring structure of Fig.
2.10. Snapshots of the principal
components of the physical TE
field, off-resonance (first plot)
and at resonance (second plot).
For visualization purposes the
coupler computational window
has been extended to[zi ,zo] =
[−4,8]µm (Illustrations taken
from Ref. [17]). z [µm]
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2.6.2 Microdisk

Here we look at the symmetrical microdisk resonator that is constituted by two of
the multimode couplers of Sec. 2.4.5. The computational setting and all parameters
are identical to the data given in Sec. 2.4.5, for gap widthsg = g̃ = 0.2µm. First
consider the spectral response obtained by CMT computations, where besides the
mode of the straight waveguide, different sets of WGMs are used as basis fields. The
curves in the left plot of Fig. 2.12 exhibit only specific extrema from the full spec-
trum with similar extremum levels. Hence these resonances can clearly be assigned
to the respective TE0 or TE1 WGM. As these modes circulate along the cavity with
different propagation constants, individual resonance conditions are satisfied in gen-
eral at different wavelengths. TE2 plays obviously only an inconsequential role.

The effect of the inclusion of higher order WGMs on the resonator response is
shown in the right plot of Fig. 2.12. While the fundamental and first order WGMs
are essential for the present resonator, inclusion of the second order WGM into the
CMT analysis leads only to minor changes. Thus for this microdisk configuration,
it is sufficient to take into account the two lowest order cavity modes as basis fields
to predict reliably the spectral response. This was alreadyevident in the coupler
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analysis of Fig. 2.8. Due to negligible interaction among the cavity modes them-
selves (which might be caused by the presence of the couplers, i.e. the perturbation
through the bus waveguides), the resonance locations in thecombined CMT analysis
(right plot) coincide well with those predicted by the single mode calculation (left
plot). Similar conclusions can be drawn by inspection of thelocal mode amplitudes
b = (bq), as functions of the wavelength, that are predicted by the CMT model [17].

The comparison of CMT and FDTD spectra in Fig. 2.13 shows a quite satisfac-
tory agreement. The right plot validates the interpolationapproach of Sec. 2.5. As
before, we see that the quadratic interpolation of the scattering matrix coefficients
and propagation constants leads to curves that are almost indistinguishable from the
directly computed results.
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Fig. 2.13 Power transmission through the microdisk resonator of Sec.2.6.2. Left: CMT and FDTD
spectra for TE modes. Right: CMT spectra (four basis modes) computed directly, and by interpola-
tion of data evaluated at the nodal wavelengths 1.015µm, 1.085µm (linear) and 1.015µm, 1.05µm,
1.085µm (quadratic interpolation) (Illustrations taken from Ref. [17]).

Fig. 2.14 shows examples for the corresponding field distributions. Off-resonance,
most of the input power is directly transferred to the through-port. At the wavelength
corresponding to one of the minor resonances, the field pattern in the cavity exhibits
a nearly circular nodal line corresponding to the radial minimum in the profile of
the first order WGM (cf. Fig. 2.4). As seen in Fig. 2.13, here the first order mode
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carries most of the power inside the cavity. The deviation form the circular pattern
is caused by the interference with the fundamental WGM, which is also excited at
this wavelength with a small power fraction. The major resonance related to the fun-
damental mode is of higher quality, with much larger intensity in the cavity, almost
full suppression of the waves in the through-port and nearlycomplete drop of the
input power.
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Fig. 2.14 Snapshots of the real physical electric field for the microdisk resonator of Sec. 2.6.2;
CMT simulations with four basis modes. The wavelengths correspond to an off-resonance state
(left), and to minor (center) and major resonances (right).The gray scale levels of the plots are
comparable (Illustration taken from Ref. [17]).

2.7 Circular optical microresonators in 3-D

So far we restricted ourselves to two spatial dimensions, inorder to explain concepts
and phenomena behind the CMT model, and for purposes of rigorous numerical as-
sessment. There are practical circumstances, however, where the 2-D setting is defi-
nitely inadequate. e.g. when an effective index approximation seems not reasonable,
when the assumption of decoupled polarizations appears to be inappropriate, when
the vectorial nature of the fields might be important (as in the case of cavity or bus
cores with pronouncedly hybrid modes), or the obvious case of vertically coupled
microresonators. One then has to resort to fully 3-D simulations. The abstract res-
onator model in Sec. 2.2 remains applicable, irrespectively of the number of spatial
dimensions. With the exception of an additional integration along the third, vertical
y-axis, the CMT formalism for the couplers is essentially identical to what has been
discussed in Sec. 2.4. Thus the extension of the present CMT resonator model to
3-D [18] should be straightforward, in principle.

The real additional complexity is the task of generating therequired basis fields.
Analytic solutions, as in 2-D, for modes of straight and — especially — bent waveg-
uides in 3-D, i.e. with 2-D cross sections, do not exist; numerical mode solvers
have to be applied. For the simulations discussed in this section we could rely on a
semi-analytical technique based on film mode matching (FMM)[20, 49, 50]. The
modal eigenvalue problem is addressed by dividing the waveguide cross section
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plane into vertical slices such that the permittivity profile is constant along the hor-
izontal/radial axis. On each slice the modal field is expanded rigorously into eigen
functions (modes of 1D multilayer slab waveguides) associated with the local re-
fractive index profile, where the sets of eigenfunctions arediscretized by Dirichlet
boundary conditions sufficiently far above and below the interesting region around
the waveguide core. 3-D modes are obtained by connecting theexpansions on the
individual slices such that the full field satisfies all continuity requirements at the
vertical interfaces, and shows the appropriate behavior inthe outermost regions.
The rigorous mode profile approximations are represented quasi-analytically, which
proves to be advantageous for the subsequent use as basis fields within the CMT
formalism (integrations).

For the 3-D coupler introduced in Fig. 2.15(a), the coupled field ansatz (2.22)
applies, with an additional nontrivial dependence on the vertical y-axis, introduced
by the — now truly vectorial — mode profiles (2.21) and (2.20) of the straight
and bent cores. The functional (2.23) and consequently the matrix elements (2.25),
(2.26) receive an additionaly-integration. Otherwise the reasoning of Secs. 2.4.1,
2.4.2, and 2.4.3 remains valid.
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Fig. 2.15 (a): Coupler setting in 3-D, a cross section perpendicular to the direction of propagation
atz= 0. A disk cavity of radiusR, core refractive indexnd and heighthd is coupled to bus waveg-
uides of core refractive indexnf , width w and heighths. Here the disk and the bus waveguide are
placed at different levels, at a vertical distances and at a horizontal positiong. Negative values
for g represent overlapping components.ns andnc are the refractive indices of the substrate and
cladding regions. (b) and (c): Choices for constituting structures for the CMT analysis. In (b) the
substrate is included into the cavity mode analysis, whereas it is excluded in (c) (Illustrations taken
from Ref. [18]).

One should be aware that the choice of the constituting structures, i.e. of the
refractive index profiles for which the basis modes are calculated, is not at all unique.
For the structure of Fig. 2.15(a), for example, the substrate could be included into the
computation of the cavity mode (b), or omitted (c). In the first case the permittivity
profile εb of the cavity is closer to the true permittivityε of the full coupler. Hence
their difference, i.e. the perturbation in (2.26), is small, and one can expect a better
overall approximation. Option (b) also allows to take the influence of the substrate
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on the cavity modes into account. As an added benefit, the integrals (2.26) in the
coupled mode equations extend only over the disk and the straight waveguide cores,
not over the substrate domain. As a disadvantage, one has to recalculate the cavity
modes for different vertical separationss. This can be avoided in the setting (c) of
Fig. 2.15. In general, the choice of the constituting structures and the selection of the
basis fields is a matter of physical intuition and of convenience for the subsequent
numerics. For the present configuration with low to moderateindex contrast between
substrate and cladding, we observed hardly any difference [18].

The performance of the coupler of Fig. 2.15 is affected by both the vertical sep-
arationsand the relative horizontal core positiong. Their influence on the elements
of the coupler scattering matrix is shown in Fig. 2.16. Whilea rigorous explanation
of these variations on the basis of modal interaction strengths, as in the 2-D case,
turns out to be difficult, the qualitative behavior can stillbe understood. For large
horizontal separationsg, due to less mode interaction, all self coupling coefficients
(a), (d) tend to 1, and the cross coupling coefficients (b), (c), (e), (f) vanish. Also, the
cross coupling coefficients satisfy the self consistency requirement of reciprocity. A
reduction of the vertical separation ((a), (b), (c) vs. (d),(e), (f)) increases the strength
of the interaction. For the small vertical distance, also the interaction (f) between the
cavity modes, affected by the presence of the straight core,is clearly no longer neg-
ligible. Comparisons, as far as possible, of these CMT results with simulations by a
beam propagation method show a reasonable agreement [18].
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Fig. 2.16 Scattering matrix elements of the 3-D couplers of Fig. 2.15 versus the relative horizontal
core positiong, for different vertical separationss. The CMT computation is based on the single
mode of the straight core (index s), together with the first three lowest order modes (b0, b1, b2)
of the disk cavity. (a, d): self coupling coefficients; (b, e): cross coupling straight/bent core; (c, f):
cross coupling between bend modes. The coupler consist of a straight waveguide withw = 2.0µm,
hs = 0.140µm,nf = 1.98,ns = 1.45,nc = 1.4017, and a disk cavity withnd = 1.6062,hd = 1.0µm,
R= 100µm (Illustrations taken from Ref. [18]).
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The resultant effect of the relative vertical and horizontal core positions on the
spectral response of the full 3-D vertically coupled microdisk-resonator is depicted
in Fig. 2.17. The data is computed with a constant scatteringmatrix at the reference
wavelengthλ = 1.55µm [18] (cf. Sec. 2.5). For configuration (a) with moderate in-
teraction strength, one observes a set of three resonances that appear periodically,
each corresponding to one of the three low loss cavity modes involved. Reducing
either the horizontal separation (b) or the vertical distance (c) leads to much stronger
coupling with deteriorated resonances. The resonance characteristics disappear al-
together in the somewhat extreme situation (d).
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Fig. 2.17 Spectral response of the vertically coupled microdisk resonator consisting of two iden-
tical couplers as in Fig. 2.16 with different vertical separations s, and horizontal positioningg
(Illustrations taken from Ref. [18]).

2.8 Concluding remarks

The ab-initio frequency domain model, as discussed in this chapter, originates from
the physical notions that are commonly used to describe the functioning of circular
microresonators. Bend modes supported by the segments of the ring or disk-shaped
cavities, together with modal fields of the straight bus cores, constitute the basis
for the quantitative coupled-mode-theory of the evanescent wave interaction in the
coupler regions.

For the present frequency domain description, it is straightforward to take into
account material dispersion. Since the spectral response is evaluated as a scan over
vacuum wavelengths, the quantities that enter the CMT equations can be determined
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directly for the material properties at the respective wavelengths. The remarks from
Sec. 2.5 on interpolation schemes for efficient spectrum evaluation apply as well.

Unlike with other common, purely numerical methods, here wehave convenient
access to all local modal amplitudes, which allows characterizing and analyzing the
resonances. One observes that, for most reasonable configurations, only one or a
few cavity modes play a significant role. It is then possible to accurately predict
the spectral response of the device in question by very efficient, quasi-analytical
calculations. Our thorough study of the 2-D version of the model serves to explain
all concepts; the examples permit a thorough benchmarking versus rigorous finite-
difference time-domain calculations. Extension of the formalism to realistic res-
onators in 3-D is straightforward. Here in particular the computational advantages
of the CMT approach are revealed, since hardly any other, even moderately efficient
simulation tool is available for practical design work.

Beyond the vertically coupled micro-disk resonator of Sec.2.7, the approach has
shown to be sufficiently flexible to handle also quite exotic 3-D configurations, like
the device with hybrid ring cavity and pedestal waveguides of Ref. [18]. Finally, the
CMT model is ideally suited to incorporate small changes in the configuration, e.g.
for purposes of the evaluation of fabrication tolerances, or for predicting the effects
of tuning mechanisms [8, 51].
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5. Popović, M. A., Manolatou, C., et al.: Coupling-inducedresonance frequency shifts in coupled

dielectric multi-cavity filters. Opt. Express14, 1208–1222 (2006)
6. Stokes, L. F., Chodorow, M., et al.: All single mode fiber resonator. Opt. Lett.7, 288–290

(1982)
7. Yariv, A.: Universal relations for coupling of optical power between microresonators and di-

electric waveguides. IEE Electron. Lett.36, 321–322 (2000)
8. Hammer, M., Hiremath, K. R., et al.: Analytical approaches to the description of optical mi-

croresonator devices. In Michelotti, F., Driessen, A., et al., editors,Microresonators as build-
ing blocks for VLSI photonics, volume 709 ofAIP conference proceedings, 48–71 (2004)

9. Okamoto, K.:Fundamentals of Optical Waveguides. Academic Press, U.S.A (2000)



2 Analytical and computational aspects 29

10. Klunder, D. J. W., Krioukov, E., et al.: Vertically and laterally waveguide-coupled cylindrical
microresonators inSi3N4 onSiO2 technology. Appl. Phys. B.73, 603–608 (2001)

11. Klunder, D. J. W., Balistreri, M. L. M., et al.: Detailed analysis of the intracavity phenomena
inside a cylindrical microresonator. IEEE J. Lightw. Technol. 20, 519–529 (2002)

12. Rowland, D. R., Love, J. D.: Evanescent wave coupling of whispering gallery modes of a
dielectric cylinder. IEE Proc.: Optoelectron.140, 177–188 (1993)

13. Chin, M. K., Ho, S. T.: Design and modeling of waveguide coupled single mode microring
resonator. IEEE J. Lightw. Technol.16, 1433–1446 (1998)

14. Cusmai, G., Morichetti, F., et al.: Circuit-oriented modelling of ring-resonators. Opt. Quantum
Electron.37, 343–358 (2005)

15. Vassallo, C.:Optical Waveguide Concepts. Elsevier, Amsterdam (1991)
16. Hall, D. G., Thompson, B. J., editors:Selected Papers on Coupled-Mode Theory in Guided-

Wave Optics, volume MS 84 ofSPIE Milestone Series. SPIE Optical Engineering Press,
Bellingham, Washington USA (1993)

17. Hiremath, K. R., Stoffer, R., et al.: Modeling of circular integrated optical microresonators by
2-D frequency domain coupled mode theory. Opt. Commun.257, 277–297 (2006)

18. Stoffer, R., Hiremath, K. R., et al.: Cylindrical integrated optical microresonators: Modeling
by 3-D vectorial coupled mode theory. Opt. Commun.256, 46–67 (2005)

19. Hiremath, K. R., Hammer, M., et al.: Analytic approach todielectric optical bent slab waveg-
uides. Opt. Quantum Electron.37, 37–61 (2005)
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