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Abstract This chapter discusses an ab-initio frequency-domain iafdgrcular
microresonators, built on the physical notions that comigenter the description
of the resonator functioning in terms of interaction betwéelds in the circular
cavity with the modes supported by the straight bus wavegui@Quantitative evalu-
ation of this abstract model requires propagation constasgociated with the cav-
ity/bend segments, and scattering matrices, that reprérsewave interaction in the
coupler regions. These quantities are obtained by an érelly?2-D) or numerical
(3-D) treatment of bent waveguides, along with spatial ¢edimode theory (CMT)
for the couplers. The required CMT formulation is describedetail. Also, quasi-
analytical approximations for fast and accurate companadf the resonator spectra
are discussed. The formalism discussed in this chapteig@®valuable insight in
the functioning of the resonators, and it is suitable foctical device design.

2.1 Introduction

Resonances in optical microcavities are explored for atadf applications[Ji112,
[3]. Single or cascaded microresonators not only in the fdrrings, disks, spheres,
but also in other forms like squares, rectangles, or flokeriicrogears (disks with
angularly periodically varying radii), and arranged inigass configurations, led to a
multitude of interesting phenomenal4, 5]. In this chapterfacus on the most com-
mon microresonator configuration applied in integratedsptonsisting of a ring-
or disk-shaped cavity which is evanescently coupled to taraltel bus waveguides.
Quite frequently the functioning of these resonators isuised on the basis of
a frequency domain modé€ll[B] [, 8], where the interactiomvben the cavity and
the straight waveguides is represented in terms of saadteratrices for the coupler
regions. Interferometric resonances are establishedgmesets of bent waveguides
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that connect these couplers. By treating the coupler sgajtmatrices and the bend
mode propagation constants associated with the cavityeagpirameters, one can
estimate the response of the microresonalois]9, 10, 11].

As a step beyond, one might try to solve the parametric madei first princi-
ples, i.e. calculate all parameter values for given geonaetd material properties.
Although this is obviously essential for realistic deviassiyn, rather few ab-initio
studies of that kind exist so far. Initial attempts can benfbin Refs. [T2[ 13 14],
which differ with respect to the methods and approximatithva are employed
to obtain the modal basis solutions for the curved cavityrsags, and to predict
the interaction between the cavity and the bus waveguidesthié latter task, ap-
proaches based on coupled mode theory (CMT)) [15, Secs. .2.4)416] are ap-
plied.

The CMT argumentsin the former studies are basically déffiethe interaction
of parallel straight waveguides, and can be extended todsw tavities (typically
very large radius and/or high index contrast). But the sibmais characteristically
different for cavity modes with non-negligible losses.dtpossible to reformulate
the CMT approach to overcome the above shortcoming< 17 Tt simulations
rely on frequency domain modal solutions for bent wavegsigled curved inter-
faces on radially unbounded domains, which can be computalgtecally for the
2-D setting [19]. In 3-D, numerical means have to be emplolikd e.g. the film
mode matching metho@R0]. For given real frequency, theséaisolutions have
complex angular propagation constants with a suitablydasty in the radial di-
rection [19], such that they can be conveniently used as ffiadils in the frequency
domain coupled mode description. The coupled mode equsatemmbe derived from
a variational principlel[17] or by means of reciprocity taaues [Z1]. This leads
to an ab-initio frequency domain spatial CMT model of cieruinicroresonators
which is a straightforward implementation of the convendibtraveling wave mi-
croresonator viewpoink[8] 9].

Once facilities for determining bend mode propagation tamrts and coupler
scattering matrices are at hand, adaptation of the modeffeveht configurations
should be relatively simple, requiring merely modificasdn the initial analyti-
cal reasoning. This concerns e.g. cavity shapes with piseestraight segments
(“racetrack” resonator§]22]), resonators with only a &rgus waveguide for reso-
nant phase shiftind 23] or with perpendicular bus waveguidres[[24]. For cases
like the coupled optical resonator waveguided [25] wheeeitiercavity coupling
needs to be taken into account, a CMT formalism as in[Sdc. Brdbend modes
of the two cavities as basis fields would be required. Extangd larger compos-
ites with parallel coupled cavitie5[26.127], serial confagions [2Z6/ 28], or even
mesh-like filters[[24.-29,-30] should be straightforward bgams of scattering ma-
trix operations, given the input-output characteristitthe single-cavity resonator
elements.

The present approach differs from models based on time domades for the
entire circular cavitied[26,-31]. These are solutions witeger angular mode num-
ber and complex eigen-frequenEy[L2] 32]. Due to their ladimowing fields, they
are not directly suitable for the frequency domain CMT fraraek. Therefore we
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use the frequency domain model of the bent waveguides assdisd in Sed_2.3.
As these modal solutions have complex valued angular moatbers, they do not

constitute valid solutions for the full rotationally symtrie cavities, and hence are
not useful to access directly the (complex) resonance &egjes of the isolated
cavities. Still, by taking into account their interactioithiwvthe straight waveguides,
one can construct approximate solutions for the systemiticavbus waveguides”

at given wavelengths, and thereafter estimate resonaegaedhncies. It is possible
to translate between both viewpoirfsi[I2} 32].

Alternatively, rigorous numerical tools can be employethtudel the resonators.
The most prominent among these are the finite difference toreain (FDTD)
method [38[734["35], and its (discontinuous Galerkin) figitement variants[36,
[314,[38]. However, already in the 2-D setting these simutatimirn out to be incon-
veniently time consuming; the computational effort reqdim 3-D is expected, at
least at present, to be prohibitive for practical designkwbrtegral equation meth-
ods are also applied for efficient analytical solutions @fe@value and scattering
problems for specific 2-D configurations of micro-ring anskctavities[[38, 40, 41].
Unfortunately, the extension to 3-D appears to be far fromiaks.

In the subsequent sections, we discuss the coupled modg tiggaroach in de-
tail. Sec[ZP describes the “standard” resonator modedditated directly for multi-
modal cavities. Evaluation of the abstract equations reguyiropagation constants
of the relevant cavity modes, and the coupler scatteringioest These quantities
are relatively easy to obtain in a 2-D setting, where alsorogs numerical data
suitable for reliable benchmarking is conveniently avs#a The 2-D configura-
tions might also be of interest as effective-index profatsiof actual 3-D structures
[L3]. Therefore we first discuss in detail 2-D configuratioh®ent waveguides in
Sec[ZB and couplers in SEC]2.4. Numerical approachesdafficient evaluation
of the resonator spectrum are presented in[Sdc. 2.5. IEBabeZe ingredients are
combined to simulate full 2-D microresonators; the extemgd three spatial di-
mensions follows in SeC.2A.7. In both cases the CMT resuitsampared with data
from other independent numerical methods. Conclusionseptesent analysis are
given in Sec[Zl8.

2.2 Analytical framework

Consider a microresonator consisting of a ring- or disk sldaghelectric cavity,
evanescently coupled to two parallel straight waveguitiethe laterally coupled
configuration (Fid—Z11, left; a top view of a real 3-D deviedso the 2-D setting
of Secd Z1H=216), these waveguides are placed ir-thglane just as the cavity is,
whereas in the vertically coupled configuration (Eigl 2ight), they are positioned
at differenty levels. Each of these configurations has its own advantagkdisad-
vantages[1l0].

We chose a frequency domain description, where a time-haimogtical signal
~ exp(iwt) of given real frequency corresponding to vacuum wavelengthis
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Fig. 2.1 The “standard” microresonator model : A laterally (a) or atieally (b) coupled res-
onator is functionally decomposed into two bent-straighveguide couplers (1) and (Il), which
are interconnected by cavity segments of lengtfasd outside the couplers. Schematics for the
laterally coupled resonator (a): A cavity of radiRscore refractive indere and widthw, is placed
between two straight waveguides with core refractive indgand widthws, with gaps of width

g andd between the cavity and the waveguides. The cladding réfeaictdex isny (lllustrations

taken from Ref[[17.-18]).

present everywhere. In line with the most common view onutdicmicrocavities
[B.[9], the resonators are functionally divided into two bstmaight waveguide cou-
plers, which are connected to each other by segments of thiy.c8emi-infinite
pieces of straight waveguides constitute the external ections, where the letters
A, B, A, B (external) and a, b, B, (internal) denote the coupler ports.

Assume that the interaction between the optical waves indkigy and in the bus
waveguides is negligible outside the coupler regions. Aksume that all transitions
inside the couplers are sufficiently adiabatic, such thek beflections do not play a
significant role for the resonator functioning. We furthestrict the model to unidi-
rectional wave propagation, as indicated by the arrowsgdZll. Depending on the
specific configuration, these assumptions can be justifi@dtpfor the examples in
Secd 2. 217 they appear to be adequate.

Suppose that the straight waveguides suppdytgiided modes with propagation
constantPsx, g = 1,...,Ns. For the cavityN, bend modes are taken into account.
Due to the curvature, their propagation constapgs= Bop — i0bp, P=1,...,Np,
are complex valued]19]. Her,, andayp are positive real valued quantities rep-
resenting phase constants and attenuation constants céifig modes. All these
modes are power normalized. Let the variabdgsBg, anday, by, denote the di-
rectional amplitudes of the properly normalized ‘forwapdbpagating (clockwise
direction, cf. FigLZIL) basis modes in the respective caupbrt planes, combined
into amplitude (column) vectows, B, anda, b.

Then the response of coupler (I) can be represented in tefrits scattering
matrix , which relates the amplitudes of the outgoing waedhé amplitudes of the
corresponding incoming modes as
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a 0 0 Sy, Sy a
A | 0 0 Sy Se A
b " | S Spks O O b~ (2.1)
B SpSss O O B~

Here the superscriptsindicate the amplitudes of backward (anticlockwise) propa
gating waves, and the zeroes implement the assumption bifitdg back-reflections.
The entries of the submatric&s,, with v,w = b, s represent the ‘coupling’ from a
particlar mode of the waveguideto a particular mode of the waveguide

A fundamental property of any linear circuit made of nonnetgnmaterials is
that the transmission between any two ‘ports’ does not depgion the propaga-
tion direction, i.e. the full scattering matrix of the rexpal circuit is symmetric
[15, Sec. 1.3.2]. This argument even holds for circuits veittenuating materials,
in the presence of radiative losses, and irrespective op#ngcular shape of the
connecting cores. It relies crucially on the precise definibf the ‘ports’ of the
circuit, where independent ports can be realized either bgenorthogonality or by
spatially well separated outlets.

Assuming that the above reciprocity requirements are featigor the bent-
straight waveguide couplers, one expects that the bidtreait coupler scattering
matrix is symmetric (as we shall see in SECSR[AZ P .Ags[PIGEZD, the numeri-
cal results give evidence that this is indeed the case) hemubmatrices this implies
that the following equalities hold (T denotes the transpose

Spp = (St;b>Ta Ssh= (St;s>Ta Sps= (Ss_b)Tv Sss= (Sgs)T- (2-2)

If coupler (1) is defined symmetrical with respect to the cahplanez= 0, and if
identical mode profiles are used for the incoming and outyfé&ids, then one can
further expect the transmissions frolnto b to be equal to the transmission from
B~ toa [15, Sec. 1.3.2]. Similarly, the transmissions frarto B and fromb™ to
A~ are equal:

Sbs = Spss Ssb= Sqpr (2.3)
As a result of [ZR) andTA.3), also the unidirectional sratg matrix
Sbb Sbs
S= 2.4
< Ssb Sss) ( )

associated with the clockwise propagation through couplés symmetric:
Sps=(Ssn)",  Sps=(Sa)"- (2.5)

The physical interpretation of the above statements is‘thatcoupling from the
straight waveguide to the cavity is equal to the couplingftbe cavity bend to the
bus waveguide’.

A completely analogous reasoning applies to the secondequghere the tilde
~ identifies the mode gmplitud@s B, andd b at the port planes, and the unidirec-
tional scattering matriss related to coupler (Il), such that the coupler operation is
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(8)-s(2): (8)-3(2) e

Outside the coupler regions the bend modes are used for seeptéon of the field
propagating in the cavity, with the angular / arc-lengthetegence given by their
propagation constants (cE_(2120)). Hence the amplitutléseaentry and exit ports
of the connecting cavity segments are related to each osher a

represented as

a=Gb and &a=Gb, (2.7)

whereG andG areN, x Ny diagonal matrices with entrie&, p = exp(—iyplL) and
Gp p = exp(—iybpl), respectively, fop = 1,...,Np.

We are interested in the case where modal | powRrs: |Ag|? andPag = |Aq|?
are given at the input port A and at the add parof the resonator, and we need
to calculate the transmitted powlé,rq = |Bq|2 at port B and the backward dropped
powerPpog = |Bq| at portB. This is equivalent to solving the linear system estab-
lished by [Z) and1217) fdB andB in terms ofA andA. Due to the linearity of the
device the restriction to an excitation in only one portgysort A, with no incoming
add—signal& =0, is sufficient. Then one obtains

= (SestGSpGQ *Sps+SsdA, B =(SuGQ 'Sp)A  (2.8)
for amplitudes of the outgoing guided modes in the throughl-drop-ports, and
b=Q !1S,A,  b=SpGCQ 1S,A (2.9)

for the internal mode amplitudes in the cavity, wh&e-=| — SbbGébbé.

The spectral response of the resonator is found by compthmdransmitted
(Prq) and droppedRbq) power for a series of wavelengths with the help[of](2.8).
Resonances manifest as peakBip along with simultaneous dips . The pro-
nounced wavelength dependence at the resonance is cautieel fogsonance de-
nominator”Q. For further insight, considd(2.8) add [2.9) wh@ris singular, i.e. it
has an eigenvalue zero, or, equivalently, wBgsG Sp,G has a unit eigenvalue. This
corresponds to a cavity field which reproduces itself afteppgating consecutively
along the right cavity segment, through coupler (I1), alding left cavity segment,
and finally through coupler (I). The self-consistent reprettbn of the cavity field
represents theesonance conditiom the present abstract multimode cavity model.

Practical evaluation of the — so far only parameterized —a¢iqus [ZB) and
(Z3) requires values for the phase and attenuation casstan= Bop —iapp of the
cavity modes, contained @, G, and the scattering matric8s S of couplers (I) and
(I). Corresponding procedures will be the subject of thefeing sections, where
the concepts are first discussed in 2-D, then extended tallh® D setting.
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2.2.1 Monomodal resonators

For fully symmetric microresonators (i.e. identical caangl(l), (Il), connected by
equal cavity segments= -) with single mode cavity and bus cores, further eval-

uation of expression§(2.8) arld(R.9) is fairly standaid8Let Sph = |Spp| ee,
Sss— ShsSsh/Swb = p €'Y with ¢, p and real. Then the dropped power is given by

|Ssb|2|Sbs|zeiaLeXt

_ 2.10
P =h 1+ |Spp|4e—2akext — 2|Spp|2e~aLext cOS(BLext — 2¢)) ( )
and the expression for the through power reads
Sed2(1+ |Sypl2p2e2akext — 2|5 e Ilextcos(BLloy— ¢ —
b _ p [Sss(1+ [Sunlp |Solo (Blea—¢—W)) 59

1+ |Spp|*e—20Lext — 2|Spp|2e~ ALext cOS(BLext — 2¢ )

HereLeyx = L+ L is the total length of those parts of the cavity which are ietaly
included in the couplerg3 anda are the phase and attenuation constants of the
single relevant bend mode of the cavity.

In principle, all quantities inf[{2Z10) anf{2]11) are wavejth dependent. Hence
the rigorous way to determine the resonator spectrum woell levaluate all rel-
evant quantities for a series of wavelengths. Some furtisglt, however, can be
obtained with the approximation that significant changethendrop and through
power, on a limited wavelength interval, originate exohesy from the cosine terms
in @I0) and[[Z711) that include the phase informatiors(taim corresponds to the
resonance denominat@ in 8) and [ZD)).

To take into account some non-negligible lenbtif the cavity segments in the
coupler regions, write the phase term3 s« — 2¢ = BLcay— @, WherelLq,, = 2R
is the complete cavity length, amg= 281 4 2¢ (a corresponding procedure is also
applied to the phase term in the numerator[of{P.11)). Furtbesider only the
wavelength dependence of the phase conflaat it appears explicitly in the term
BLcav— @. In this way, one incorporates the wavelength dependendeeophase
changeBL.,, for the entire cavity, but disregards the wavelength depeod of the
phase change that is introduced by the interaction with the port wavegsid

Resonances (i.e. maxima of the dropped power) are now dkearad by singu-
larities in the denominators di(ZI1d), {21 11), which oowbtien cogBLcay— @) = 1,
i.e. when the total phase gain after after one cavity rouipdgra multiple of 2t.
This leads to theesonance condition

2mrm+ @

B= =:Bm, forintegerm. (2.12)

LC&V

For a resonant configuration, tdeopped powers given by

|Ssb|2|sbs|2efaLext
(1 _ |Sbb|2e*0’Lext)2 '

Polp—pn = P (2.13)
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Note that properly computed values $f, Sps andSyy, already include the losses
along the parts of the cavity inside the couplers. Therelggein ZI3) (and in
those places of (Z10[ {Z111) where attenuation is coecBmmust not be replaced
by Lcav-

For the present case of monomodal resonators, one can nw thex following
familiar expressions that characterize the resonahteslf8g we only summarize
the results.

e Thefree spectral range (FSR)A is defined as the wavelength difference be-
tween two successive maxima of the dropped power (or miniitleothrough
power) and is given by

/\2

AN =
neﬁLcav m

(2.14)

whereA is the resonance wavelength of theth order resonance, amidy =
ABm/2mis the effective mode index of the cavity mode. Here we assiutimat
the effective group index is equal to the effective index.

e Thefull width at half maximum (FWHM24A measures the width of the reso-
nance peak at a level of half the resonance value, i.e. thprsbss of the peak.
For the resonance of orderone obtains

A 2
m—cavneﬁ

20 =

< 1 eaL/2|Sbb|e_aL/2). (2.15)
m \|Sbb|

e The ratio of the FSR and the FWHM at a specific resonance isctctiefinesse
F:

AA - |Sbb|e*"L/2

200 T 1-— |Sbb|2670’|-.

e Thequality factor Qcan be viewed as the ability of the cavity to confine the field
in space or time, which determines the sharpness of the aaserpeaks. It is
defined herfl as the ratio of the resonance wavelength to the FWHM

F—

(2.16)

= —/\ = nneﬁLcaV |Sbb|e7aL/2 _ NeftLcav
20A A 1— |Sbb|ze_a|‘ A

Q F. (2.17)

Hence, for a circular resonator with radi@sand cavity length_c,, = 271R, one
obtainsQ = kRnyF for the relationship betwee@ and finessé .

Again, one can improve the accuracy of the above expresiipusing the effective
group index of the cavity mode in place of the effective maubkekngs [8].

L In the time domain, th@ factorQ = w/(28w) is defined as the ratio of the optical power stored
in the cavity to the cycle averaged power radiated out of théty [47]. The larger the factor,
the longer the optical field is trapped inside the cavity.



2 Analytical and computational aspects 9

2.3 Waveguiding along bent cores

An analytical description of bent slab waveguides is appéyrevell known [15,
Sec. 5.2.4],[[43-44], but seemingly hardly ever evaluatgdrously. Bessel- and
Hankel-functions of large complex order and large arguraemtnvolved. Probably
this constitutes a major obstacle, such that most authsostesl to approximations.
However, by using uniform asymptotic expansions of the Biéidankel functions,
we found that a quite rigorous analytic treatment of the fwohis possible[T19].

Consider a bent slab waveguide with thexis as the axis of symmetry as shown
in Fig.[Z2. For the present 2-D treatment, all material prtips and the electromag-
netic fields are assumed to be invariant inytorection. Being specified by the radi-
ally dependent piecewise constant refractive indgy, the waveguide can be seen
as a structure that is homogeneous along the angular cate@irHence we choose
an ansatz for the bend modes with pure exponential depeadenthe azimuthal
angle, where the (dimensionless) angular mode number isncoty written as a
productyR with a reasonably defined bend radRissuch thaty can be interpreted
as a propagation constant . Note that the definition of the badiius (here the outer
rim, as in Fig[ZP), and consequently the definition of theitgasize, is to some
degree arbitrary. The consequences of different choicBsaoé explained i [19].

In the cylindrical coordinate systerm,y,8), solutions for the optical electric
field E and magnetic fieltH are sought in the functional form (in the usual complex
notation) of bend modes

(& Jeou=(fmsy Joder e

The tilde indicates the mode profilgis the propagation constant of the bend mode.
Since the electromagnetic field propagating through théwaweguide is lossy =

B —ia is complex valued, wher@ anda are the real valued phase and attenuation
constants.

Fig. 2.2 2-D bent slab waveguide. The core of thick- 2
nessd and refractive indexy is embedded between
an interior medium (‘substrate’) with refractive index
ns and an exterior medium (‘cladding’) with refrac-
tive index nc. The distance between the origin anc
the outer rim of the bend defines the bend radis
(llustration taken from Ref[19]).

Inserting the ansatE{Z118) into the Maxwell curl equatj@me obtains two de-
coupled sets of equations: one set for transverse eledty Waves with nonzero
component&,, H,, andHg, and a second set for transverse magnetic (TM) waves
with nonzero componentsdy, E;, andEg. Within radial intervals with constant re-
fractive indexn, the principal componentg = Ey (TE) orp = Hy (TM) satisfy a
Bessel equation
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+(n2kz—§)q0:0 (2.19)

2
o’ 109
ar2 " r or
of complex ordeyR, wherek = 271/ is the given real valued vacuum wavenumber.

By solving [ZI®) piecewise in radial intervals with comgteefractive index, to-
gether with polarization dependent material interfaceddéons and suitable bound-
ary conditions at — O (bounded solutions) and at— o (outgoing fields), one ob-
tains a dispersion equation (transverse resonance aomditir the bent waveguide.
For a given frequencw, discrete values oy are to be identified as roots of this
equation in the complex plane, where we employed numerieah®in the form of
a secant method. Bessel/Hankel functions with complexradeevaluated on the
basis of uniform asymptotic expansiohsl[45].

The outcome is a set of complex bend mode propagation cdastéh accom-
panying complex mode profiles. The modes are labeled by th&au of radial
minima in the absolute value of the principal component.ditegheir oscillatory
behavior in the outer region, the bend modes can be rigor@aster normalized
and they satisfy certain orthogonality conditions. We rééeRef. [19] for further
details on the solver and on bend mode properties.

2.3.1 Bend modes

Fig [Z3 illustrates results of the former procedures. Bogé bend radius, the bend
mode resembles closely the familiar, well confined mode ofrarsetric straight
slab waveguide. Closer inspection reveals that the talil@bent mode is protruding
more outwards into the cladding region than inwards intostitgstrate region. For
smaller bend radii, the confinement decreases and theveelatiel of the field in the
cladding grows, along with a shift of the absolute field maximtowards the outer
rim of the core. With increasing bend radius one observedransh exponential
decrease of the attenuation constant, whereas the phasgmbof the bent mode
approaches the phase constant of the corresponding stnagbguide mode[19].

The effect of ‘bending’ and the lossy nature of the bend maesillustrated
best by the snapshots of the physical fields in the second fdvigdZ3. For the
bent waveguide witlR = 3um, the radiative tails of the field in the cladding are
clearly visible. Just as for straight configurations, thafotement of bend modes
depends upon the refractive index contrast; for sufficjemitle waveguides, higher
order modes can be supportedI[19].

2.3.2 Whispering gallery modes

If the core width of a bent waveguide with sufficient curvatisincreased, a regime
can be reached where the modes are guided by just the oukectdinterface,
while the precise location of the interior interface becsrineelevant. The model of
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Fig. 23 TEy mode profiles for bent waveguides withs, ns,nc) = (1.0,1.5,1.0), d = 0.5um,

A = 1.05um for bend radiiR = 10,5,3um. First row: radial dependence of the absolute value
of the basic electric field componeﬁ;. The profiles are power normalized, with the global phase
adjusted such thsﬁy(R) is real and positive. Second row: snapshots of the propaghénd modes
according to[(Z7I8). The gray scales correspond to thed@fehe real, physical fieldy. npeff =

y/k are 13232—i6.4517-1071%, 1.2930-i7.5205.10°% , 1.2576—i 6.8765- 10~ resp.

Sec[ZB also covers such configurations with the formalegh®i= n; in Fig.[Z2.
The solutions are called whispering gallery modes (WGMg).[EZ illustrates the
first four lowest order WGMs that are supported by a struciitie the parameters
of the previous bent waveguide segments, where the intea®been filled with the
core material. While the fundamental field & well confined to the waveguide,
the higher order modes spread far beyond the core. Althcwegetmodes attenuate
fast, we shall see in Sdc.2b.2 that they can influence tipones of a resonator
with a cavity made up of the present bend segments.

20
[
3 3 -3 3 3

Fig. 24 TE polarized whispering gallery modes; the plots show thephite valuglEy| of the
radial mode profile (top) and snapshots of the propagatiggipal fieldEy (bottom). The effective
mode indiceg; /k for bend radiu®k = 5pm are 132793-i9.531. 107 (TEp), 1.16931—i4.032-
104 (TEy), 1.04222—i5.741- 103 (TE,), and 092474—i1.313-10 2 (TEz), for A = 1.05um.
All modes are power normalized.
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2.4 Bent-straight waveguide couplers

Capitalizing on the availability of analytical bend modes& now proceed to the
coupler regions. One of the many variants of coupled modayh€MT) [15, Secs.
1.4, 4.2.4],[[15] will be applied here to model the interantdf the optical waves.
The formulation takes into account that multiple modes ioheaf the cores may
turn out to be relevant for the functioning of the resonafbrs.

Consider the coupler configuration shown in Eigl 2.5(a). basis fields for the
CMT description are the time-harmonic modal solutions eisged with the iso-
lated bent (b) and straight cores (c). In line with the asdionp of SedZI2 only
forward propagating modes are considered, where for cienea we choose the
z-axis of the Cartesian system as introduced in[Elg. 2.5 asdhemon propagation
coordinate for all fields.

(b) (c)
z z
T
G 0 T g x
(E,H,e¢) (Ebpv Hyy, €b) (Esq,qu755)

Fig. 25 The bent-straight waveguide coupler configuration (a)ptau(l) of Fig.[Z1. The in-
teraction between the modal fields supported by the bent @malst cores is restricted to the
computational windowx;, ] X [z,2o]. Inside this region the optical field is represented as a lin-
ear combination of the modal fields of the bent waveguide (o) af the straight waveguide (c)
(lustrations taken from Refl[17]).

Let Epp, Hup, ande, represent the modal electric fields, magnetic fields, and the
spatial distribution of the relative permittivity of the ttevaveguide. For the CMT
formalism, the bend mode field ansdiz(2.18) in the polardioates is expressed
in the Cartesiam-z-system, such that the basis fields for the cavity read

<5iﬁ)<x, 2= (Ebp ><r<x, 2))e RO, (220

bp

Hereﬁbp and|:|bp are the radial dependent electric and magnetic parts of daem
profiles; ybp are complex valued propagation constants. Consistentthgtiilefini-
tion in Sec[ZB, the bend radiRsndicates the position of the outer curved interface
(Fig.Z3).

Similarly, Eg;, Hsg, andées denote the modal fields and the relative permittivity
associated with the straight waveguide, which are given by

(52 >(x,z) _ <Em)(x) o iBxz (2.21)

sq
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Here positive propagation constarfig characterize the phase changes with the
propagation along thedirection.

Now the total optical fielde, H inside the coupler region is approximated by a
linear combination of the modal basis fielfs{2.20) dnd {Pa®1

< v )(x, 2) = v;,s%acw(z) ( o >(x, 2), (2.22)

with a priori unknown amplitudeG,; that are allowed to vary with the propagation
coordinatez. For ease of notation, these amplitudes are combined infditaiche
vectorsC = (Cy,Cs) = ((Ghi), (C4)). The governing equation f& is derived using

a variational principle. Unlike e.g. in RefJ112], here ndhgse matching’ arguments
appedi. Via the transformatiofir, 8) — (x,z), the tilt of the wave front of the bend
modes[[Z20) is explicitly taken into account.

2.4.1 Coupled mode equations

Consider the functional

F(EH) = //[(D E)-H* — (Ox H)-E* +iwpH-H* +iweoeE - E*] dxdz,
(2.23)
a 2-D restriction of the 3-D functional given in Ref. 15, S&&.6, Eqn.(1.98)]. For
the present 2-D setting, the above curl operators are irgteg with the conven-
tion of vanishing derivativeg, = 0. The Maxwell equationsl x E = —icwuH, and
O x H = iweyeE form a necessary condition for stationarity &f with respect to
variations of(E,H).

By inserting the trial fieldlZZA2) into the function@{2)28ve restrict# to the
fields allowed by the coupled mode ansatz. For the ‘optimalitoon of the curl
equations in the form of the fielf{Z]22), the variation®{C) is required to vanish
for arbitrary variation®C. Disregarding boundary terms, the first variations’of
atCin the direction®Cyj, for j=1,...,Ny and w=b,s, are

5F / NV{M- RSN -C\,-}éc\j,dz cc (2.24)
V;yg; VIL,W| dZ VIL,W| | j

wherec.c. indicates the complex conjugate of the preceding intedtzten,
Myiwj = /az- (Evi x Hyj + Eyj x Hyi) dx, (2.25)

Fuiwj = _iwgo/(e_gv)Evi -Eyjdx, (2.26)

2 The arbitrariness in the choice Bfrenders the actual value plirtually meaningles<T19]. Only
the productyR is relevant.
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and wherea; is the unit vector in the-direction. Consequently, one arrives at the
coupled mode equations

v . Ny
Muiwi g~ FuwjCi =0, for j=1,... dw=b,s (2.27
V;,si; VW gz V;‘g; viwj Cui , Tor | s, Ny, andw s ( )

as a necessary condition fof to become stationary for arbitrary variatiodSy;.
The same expression is obtained from the complex conjugatefp[Z24). One can
alternatively derive these coupled mode equations by mafameeciprocity identity
[L5, Sec. 4.3]. In matrix notatio {ZR7) read

M(2) ((jj—g(z) =F(2C(2). (2.28)

Due to the functional form of the bend modes and the varyistadce between the
bent and straight cores, the coefficiehtsF arez-dependent. For explicit represen-
tations of these equations in the single mode d&se Ns = 1, see Ref[]8].

2.4.2 Coupler scattering matrices

In practice we solve the coupled mode equations numericBflg solution can be
represented in terms of a transfer maffiXcf. Sec[ZZR) that relates the CMT
amplitudes at the output plaze= z, to the amplitudes at the input plaae- z of
the coupler as

C(z) =TC(z). (2.29)

We still need to relate the transfer matrix, obtained diyeas the solution of the
coupled mode equations on the limited computational windowhe coupler scat-
tering matrix as required for the abstract model of Bet. 2.2.

Outside the coupler regidm, x| x (7,7, it is assumed that the interaction be-
tween the fields associated with the bent waveguide and tthiglst waveguide is
negligible. In this region, the individual modes propaggtundisturbed with the
harmonic dependences on the respective propagation catediare given by

I~E|o i 0—6; E i .

by ( EbP ) e 1eRO-00) for > g, By % ) e 1B for 2> 2(2.30)
pr HSQ

Hereap, Aq andbyp, By are the constant external mode amplitudes at the input and
output ports of the coupler, as introduced in $€d. 2.2. Thedinate offsets;, 6
andz,, 6, are as defined in Fig2.5.

Because of the assumption of vanishing external intenaciias expected that
outside the coupler the modes of straight waveguide prdpagi¢h constant am-
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plitudes (with suitable phase changes). While the modele§traight waveguide
are typically well confined, the leaky bend modes may extandbéyond the bend
waveguide, even reaching the region of the straight wadeeore. This affects in-
trinsically the way the CMT adjusts the amplitudeégz,) in (Z29). The physical
field around the exit planes of the CMT window consists of aesppsition of the
outgoing guided modes of the straight waveguide and a naadedyart due to the
leaky bent modes. To extract the required external am@idg, Bq, we therefore
project the total coupled field on the modes of the straightegaide. Exploiting
their orthogonality properties, the projection at the deuputput plane = z, yields

Np M
Bqexp(ifuz) = Cog + Y Copy 0. (2.31)
p=1 4,59

where the mode overlapémin; occur already in the coupled mode equati@ns{2.28).
A similar procedure is applied to relate the coefficiefdgo the amplitude€y, at
z=17z. There is no need of such a projection for the external benderamplitudes,
since the field strengths of the straight waveguide modesuslly negligible in
the respective angular planes, where the major part of thd b@de profiles is
located. Here merely factors are introduced to adjust feraffisets of the angular
coordinates in([Z30).

Thus, given the solutiof {Z.P9) of the coupled mode equatiothe form of the
transfer matrixT, the scattering matri$ that relates the amplitudes, by, Aq, B
of the external fields as required [D{R.6) is

S=QTP 1 (2.32)

whereP andQ are (N, + Ns) x (Np + Ns) matrices with diagonal entrie3, , =
exp(—iywpRE) andQp p = exp(—iywpRB,), for p=1,...,Ny, followed by the en-
triesPqin, g+N, = €XP(—i1Bsgz) andQqi Ny g+, = EXP(—iBxZ), forg=1,...,Ns.

A lower left blockis filled with elementBq.n, p = Mbp’sq/qu,sq|Z:Zi andQq+Ny,p =
Mbp’sq/qu,sq|ZZZO, forg=1,...,Nsandp=1,...,Ny, respectively, thatincorporate
the projections. All other coefficients & andQ are zero.

Indeed, as observed in SdCS.2.4.4 BOAR.4.5, the projectplitedes|By|? (or
the related scattering matrix elemeffig, wj|%) become stationary, when viewed as
a function of the exit port positior,, while at the same time the associated CMT
solution|Cs(2)|2 (or the elementsT .wj|? of the transfer matrix) exhibit an oscilla-
tory behavior. Still, in the sense of the projections onesgaeak of ‘non-interacting,
decoupled’ fields. This justifies the restriction of the cartgtional window toz-
intervals where the elements 8f (not necessarily off) attain constant absolute
values around the input and output planes.
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2.4.3 Remarks on the numerical procedures

Eqg. (Z28) is solved numerically on a rectangular comporeti window|x, x| x
[7,2,) as shown in FigZ15. For given the integralsl{Z25) anfi{Z]26) are numeri-
cally computed by the trapezoidal ru[e]46] using a unifolistretization ofix, x|
into intervals of lengthhy.

Subsequently, a standard fourth order Runge-Kutta schéhieid applied to
solve the coupled mode equations over the computationahoiom, z,|, which is
splitinto intervals of equal lengthy,. Exploiting the linearity ofl(Z28), the procedure
is formulated directly for the transfer matrix which gives

dT

5@ = M(2) *F(2)T(2) (2.33)
with initial condition T(z) = |, wherel is the identity matrix, such that(z) =
T(z) C(z). While the evaluation of the resonator propertieskiafpadel [Z8),[Z1)
requires only the solutiol = T(z,) at the coupler output plare= z,, examination
of the evolutions off (z) andS(z) turns out to be instructive.

2.4.4 Couplerswith monomodal bent waveguide

Consider bent-straight waveguide couplers formed bygdttaand circularly bent
cores of widthsvg = 0.4pm andw, = 0.5um with refractive indexa; = ng = 1.5,
embedded in a background with refractive inaigx= 1. The bend radiuR and the
distanceg between the cores are varied. The CMT simulations are caoti¢ on
a computational window 0, x| X [Z,Z] = [0,R+10] um x [-R+1,R—1] pm,
if R<5 pm, otherwise on a window of, %] x [z,%] = [R—5,R+ 10 pm x
[—8,8] um, discretized with step sizes f = 0.005um andh, = 0.1pum.

First we look at the interaction of waves for vacuum wavetang= 1.05um
and bend radiuR = 5pum. For this setting both constituent waveguides are single
modal, with propagation constantgk = 1.29297—i7.5205- 10~ for the TR, bend
mode, and3/k = 1.3137 for the straight waveguide. The CMT analysis generates
2 x 2 transfer matrice$ and scattering matrices that can be viewed as beirg
dependent in the sense as discussedfod 2.33[Hg. 2.6 shevevolution of the
matrix elements with the positian= z, of the coupler output plane.

The matrix element$,; andS,; relate the amplitudes of an input moid® an
output modeo. Thus for the present normalized modes the absolute sqcandse
viewed as the relative fractions of optical power trangféifrom mode at the input
planez = z to modeo at the output plane= z,. After an initial interval, where these
quantities remain stationary, one observes variationsarthe central plane= 0,
which correspond to the interaction of the waves. Here theially nonorthogonal
basis fields are strongly overlapping; it is therefore nopgsing that the levels of
specific components dT % and|Se; |2 exceed 1 in this interval.
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Fig. 2.6 Elements of the

TE transfer matrixT and 1 TE

scattering matrixS as a = |----- |Tb0,h0|2

function of the output plane %75 1Su050°

position 7, for couplers . '

as introduced in SeC. 3.4 | L S R O TP

with R = 5pm and g = 025 e 00

0.2um, at A = 1.05um — Boosol T

(llustrations taken from _4 = o 2 44 2 0 2 4
Ref. [L1)) 2. fum] 2. fum)

After the region of strongest interaction, near the end efzbomputational in-
terval, one finds that the elemertgy; |2 that map to the bend mode amplitude be-
come stationary again, while the eleme|ts; |2 related to the output to the straight
mode still show an oscillatory behavior. This is due to theiiference effects as ex-
plained in SedZZ212. The proper amplitudes of the modekebtis channel can
be extracted by applying the projection operation{2.318;dorresponding matrix
elementgSsq; |2 attain stationary values, such that the ‘coupling strenedicted
for the involved modes does not depend on the position ofdlpler output plane.

The final scattering matri$ that enters the relationE{2.8) afid{2.9) should be
considered a static quantity, computed for the fixed contjmmtal interval(z,z,].
From the design point of view, one is interested in the eleémehthis matrix (the
‘coupling coefficients’) as a function of the resonator / glen design parameters.
Fig [Z1 summarizes the variation®fwith the width of the coupler gap, for a series
of different bend radii.

TE s 2

1S 0l
b0,s0 s0,b0!

Fig. 27 Scattering ma- 1!
trix elements [Syi|? ver- os
sus the gap widthg, for i
couplers as considered in 06,

2 2
R ISpopol 1Sg0s0l
3pum ——  ooooo

Sec[ZZW with cavity radii 0.4t} Sum e

R =3,5,10,15um, for TE 0'2‘.‘- /7 10um ==  ceeee

polarized waves atA = Y T -

1.05pm (lllustrations taken %92 02 06 08 1 1
from Ref. [17]). g [um]

For all radii, one observes that for large gap widths, the-inderacting fields
lead to curves that are constant at levels of unitﬁg@soﬁ (full transmission along
the straight waveguide), moderately below unity 4o 0/? (due to the attenuation
of the isolated bend mode), and zero Bkoso|®> and |Ssano|? (decoupled fields).
As the gap width decreases, the growing interaction betweemodes in the two
cores increases the cross coupljﬁglsoF, |Ssqb0|2 and decreases the self coupling
|Ssasol2, |Sbobo|2. This continues until a maximum level of power transfer taiaed
(where the level should depend on the ‘phase mismatch’ legtilee basis fields,
though a highly questionable notion in case of the bend mfids If the gap is
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further reduced, the cross coupling coefficients decreasa if the strength of the
interaction is increased. This is due to ‘forth and back diogh where along the
propagation axis a major part of the optical power is firshsfarred completely
from the input channel to the adjacent waveguide, then bathet input corel[47].
Therefore one should distinguish clearly between the ntades of the coefficients
&28) in the differential equations that govern the caupfpirocess, and the solution
of these equations for a finite interval, the net effect ofd¢bapler, represented by
the scattering matriss.

For the symmetric computational setting used for the sitiara in Figs[ 2k and
2, the reciprocity requirement, i.e. the symmetrySofsee Se€212) is satisfied
appropriately. In Fid216, the curves related|£?;g;;(mo|2 and |Sb0730|2 end in nearly
the same level &= z,. One observes some deviations for configurations with very
small bend radii and gaps close to zero. For such extremes,ctise underlying
ansatz[[Z22) of CMT may not be valid. Otherwise the symmetre scattering
matrices provides a useful means to assess the accuracy 6MMA simulations,
beyond merely the power balance constraint.

2.4.5 Couplerswith multimodal cavity segments

Next we consider couplers that consist of a straight wavdsgcliose to a single bent
interface that supports a range of WGMs. A parameter setasitt Sed 2414 is
adopted, witm, = ns = 1.5, n, = 1.0, R=5um, ws = 0.4pum, andg = 0.2um, for

a reference wavelengih = 1.05um. A few WGMs supported by the curved inter-
face are illustrated in Fifl_2.4. The CMT analysis is carbetion a computational
window [x,%] = [0,15 um, [z,2] = [—4,4] um with large extent in the (radiak
direction, in order to capture the radiative parts of theydsgher order bend fields.
Step sizes for the numerical integrations lare= 0.005um, h, = 0.1um, as before.

It is not a priori evident how many basis fields are requiredsfparticular sim-
ulation. FigZB shows the effect of the inclusion of thehH@igorder WGMs on the
evolution of the primary coefficients of the mati$x The self coupling coefficient
|Sbowo|? of the fundamental bend field is hardly influenced at all, dredd is only
a minor effect on the cross coupling coef‘ficierﬁgqbo|2 and |Sbo’so|2. But the self
coupling coefficientssogso|2 of the straight mode is reduced by a substantial amount
with the inclusion of the first order bend mode, due to the el coupling to that
basis field. Apparently, for the present structure it is sifit to take just the two
or three lowest order bend modes into account. This is oneechdvantages of the
CMT approach, where one can precisely analyze the signdfiecahthe individual
basis modes (cf. the comments in $EC.2.6.2).

With three cavity fields and the mode of the straight waveguilde CMT sim-
ulations lead to 4« 4 coupler transfer and scattering matrices. The evolutiadhed
16 matrix elements follows similar qualitative trends aig.[Z®, albeit with ad-
ditional intricacy due to the multimodal cavity [17]. It ng out that, for the present
case, the coupling between the bend modes themselves ik plignegligible. Ac-
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Fig. 2.8 Effect of the inclusion of higher order bend modes on the wiah of the scattering
matrix for the multimode coupler of SECZW.5. Results farwaves with one (dashed line), two
(dash-dotted line), three (solid line), and four cavity meddotted line) taken into account (lllus-
trations taken from Refl117]).

cording to Fig[ZB, the elements of the scattering matrhilgika similar variation
with the gap width as found for the former monomode couplefrisHig [ZT). With
growing separation the cross coupling coefficients teneto.ZThe constant levels
attained by the self coupling coefficients of the bend modesiatermined by the
power the respective mode loses in traversing the compuatdtivindow. Also here,
with the exception of configurations with almost closed gap,see in the central
and right plots that the cross coupling coefficients withersed indices coincide,
i.e. the simulations obey reciprocity.
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Fig. 29 Scattering matrix elementS,;|? versus the gap widtg for the couplers of SeE-22.5.
The CMT simulations are based on three WGMs (indices b0, 2)laid on the field of the straight
waveguide (index s0) (lllustrations taken from REf1[17]).

2.5 Spectrum evaluation

Having access to the bend mode propagation constants amdtipéer scattering
matrices,[[ZI8) permit to compute the resonator resporsg cén be done in several
ways with adequate efficiency.

e Direct method:In principle the spectral response can be obtained by rieygeat
all calculations for a series of wavelengths. This requieeslculating the bend
mode propagation constants and scattering matrices.

¢ Interpolation of reduced scattering matrices:substantial computational over-
head can be avoided, if one calculates the relevant quemtiterely for a few
distant wavelengths, and then interpolates between tredges: The interpola-
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tion procedure, however, should be applied to quantitiasuhry slowly with the
wavelength.

In line with the reasoning at the end of §ec.A.2.1, one egjeat the wavelength
dependence of the transmission is determined mainly bylthegygain along the
cavity, which is caused by a comparably slow wavelength depece of the
bend mode propagation constaps, but multiplied by the cavity lengthis, L.

If a substantial part of the cavity is already covered by tbepters, then the
matricesS exhibit fast phase oscillations with the wavelength, sucit § is
not directly suitable for interpolatiol [47]. The coupledwe interaction might
introduce additional slow wavelength dependence.

To separate the two scalesSndivide by the exponentials that correspond to the
undisturbed wave propagation. This gives the reducedesoaitmatrix

s’ =Q°s(PY)*. (2.34)

HereP? andQO are diagonal matrices with entriB%j andQﬁ{j as defined foP

andQ in Z32). Formally, one can vie® as the scattering matrix of a coupler
with zero length, where the interaction takes place inatagusly az = 0. This
modification ofS, applied analogously t8, is compensated by redefining the
lengths of the external cavity segmentd.as:- L’ = niR, by changing the matrices
G andG accordingly, and, where necessary, by taking into accdeattered
phase relations on the external straight segments.

After these modifications, the new matric®@sandG’ capture the phase gains of
the cavity fields along the full circumference. These sholy slow wavelength
dependence, just & and S/, such that they can be successfully interpolated
7).

e Assumption of a constant scattering mats an extreme variant of the former
approximation,[[Z]8) are evaluated with the scatteringimédr a central refer-
ence wavelength, together with rigorously computed orptkated cavity mode
propagation constants.

2.6 Circular microresonatorsin two spatial dimensions

The ingredients discussed so far are now combined into alaiol tool for en-
tire resonator structures. We compare the results of the @MFoach with finite-
difference-time-domain (FDTD) simulations based on asdarder Yee mesh with
total field/scattered field formulation and artificial traasent (perfectly matched
layer, PML) boundary condition§ L7, 48]. While the preseréamples consider
exclusively TE polarized fields, the abstract reasoninggo[&2 and the CMT for-
malism in SedZ]4 are just as well applicable for TM polai@a[L7].
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2.6.1 Microring

We consider the symmetric ring resonator with monomodetgamade up of the
couplers of Se€Z4.4. In line with the assumptions leathin@8) and [Z19), the
fundamental mode of the bus waveguides is launched at tha pgot with unit
power, with no incoming field at the add port. Hig:2.10 shdvesgpectral response
for parametersi. = ng = 1.5, n, = 1.0, W, = 0.5pum, ws = 0.4pum, R=5pum, g =

§ = 0.2um, in a wavelength interval around the former arbitrarilypsén design
wavelengthh = 1.05um. The further computational setting is as given for Eigl 2.6

TE CMT FDTD Direct Quadratic Linear Direct With SY, S atA=1.05 pm

PLIPPLIP,
o
(]

1.04 1.06 1.08 1.02 1.04 1.06 1.08 1.02 1.04 1.
A [um] A [um] A [pm]

Fig. 210 Relative transmitted powd?: and dropped powdr, versus the wavelength for a ring
resonator as discussed in $ec2.6.1; Left: CMT and FDTDteestenter: CMT results with spec-
trum evaluation by the direct and by the interpolation mdthdgth nodal wavelengths.@15um

and 1085um (linear), or 1015um, 1.05um, and 1085um (quadratic interpolation). Right: Spec-
trum evaluation by the direct and the constant scatteringixnm@ethod (lllustrations taken from

Ref. [17]).

One observes the familiar ring resonator resonance patigraips in the trans-
mitted power and peaks in the dropped intensity. Accordingig [ZT, the present
parameter set specifies configurations with rather strotggantion in the coupler
regions (Sbo’so|2 = 30%), such that the resonances are relatively wide, wittba su
stantial amount of optical power being directly transfdrie the drop port also in
off-resonant states.

The CMT results are compared with FDTD simulations (for ntioz details,
see Ref[[1l7]). As seen in the left plot of HIg-2.10, we find aoedlent agreement
between the CMT and the FDTD results for TE polarization tftoone observes
minor deviations for the TM case, where the fields are disnaous [1F]). Even
in the present 2-D setting, these FDTD calculations typiagalquire a computation
time of several hours, while the CMT analysis (with integia@n) delivers the entire
spectrum in just a few minutes.

The central plot of Fig-Z10 shows the resonator spectruobtsned by inter-
polating bend mode propagation constants and CMT scaitenetrices for only
two (linear interpolation) or three (quadratic interpaa) distinct wavelengths, ac-
cording to Sed€2]15. While small deviations remain for thedir approximation, on
the scale of the figure the curves related to quadratic iotetipn are hardly dis-
tinguishable from the direct CMT results. The right-mositpf Fig.[ZI0 shows
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that the assumption of a constant scattering matrix is pgyfeeasonable for the
current setting. Minor deviations appear only far from tbé&erence wavelength.
Thus the interpolation approach provides a very effectieans to predict accu-
rately the resonator spectrum, in particular if narrow dipsaks in the responses of
high-quality resonators have to be resolved, such thatiteetevaluation would be
computationally expensive. We shall exploit this later onthe 3-D simulations.

The principal field components for off-resonance and resboanfigurations
are illustrated in Fig.Z11. In the off-resonance stateaiyeerves the large through
transmission and small amplitudes of the waves in the darpglong with minor
wave amplitudes in the cavity. At the resonances, the $tr&ignsmission is almost
suppressed. A major part of the input power arrives at thp-part, and the leaky
nature of the ring mode can be clearly observed.

Fig. 211 CMT results for
the microring structure of Fig. 6
EZT0. Snapshots of the principal 4
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field, off-resonance (first plot)
and at resonance (second plot)
For visualization purposes the
coupler computational window -4 (=)

E
=
x

o

2
5 .
ReE) Fregesh

has been extended {g,z] = 0 -1053m A AYR
[—4,8pm (lllustrations taken 6 -4 2 0 2 4

from Ref. [17]). z [um]

2.6.2 Microdisk

Here we look at the symmetrical microdisk resonator thabisstituted by two of
the multimode couplers of S§c.ZK.5. The computationéhgeand all parameters
are identical to the data given in SEC.214.5, for gap widtks§ = 0.2um. First
consider the spectral response obtained by CMT compuatiginere besides the
mode of the straight waveguide, different sets of WGMs aeglas basis fields. The
curves in the left plot of Fig.Z12 exhibit only specific ettra from the full spec-
trum with similar extremum levels. Hence these resonanae<learly be assigned
to the respective Tgor TE; WGM. As these modes circulate along the cavity with
different propagation constants, individual resonancelitns are satisfied in gen-
eral at different wavelengths. Bplays obviously only an inconsequential role.
The effect of the inclusion of higher order WGMs on the resoneesponse is
shown in the right plot of Fig-212. While the fundamentadi dinst order WGMs
are essential for the present resonator, inclusion of tberseorder WGM into the
CMT analysis leads only to minor changes. Thus for this nisioconfiguration,
it is sufficient to take into account the two lowest order tamodes as basis fields
to predict reliably the spectral response. This was alreadyent in the coupler
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Fig. 2.12 TE power spectrum of the microdisk resonator of EECP.6MT @nalysis with differ-
ent sets of basis modes. Besides the mode of the straighguidee only one WGM (TE, TE, or
TEy; left), or the two and three lowest order WGMs (right) is/taken into account (lllustrations
taken from Ref.[[17]).

analysis of Fig.Z]8. Due to negligible interaction among tavity modes them-
selves (which might be caused by the presence of the couperthe perturbation
through the bus waveguides), the resonance locations aothbined CMT analysis
(right plot) coincide well with those predicted by the siaghode calculation (left
plot). Similar conclusions can be drawn by inspection ofltieal mode amplitudes
b= (bg), as functions of the wavelength, that are predicted by th& @G\del [1T].

The comparison of CMT and FDTD spectra in FIig.2.13 shows teaqaitisfac-
tory agreement. The right plot validates the interpolatpproach of SeE2.5. As
before, we see that the quadratic interpolation of the égat matrix coefficients
and propagation constants leads to curves that are alnaiistinguishable from the
directly computed results.
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Fig.2.13 Power transmission through the microdisk resonator off5€Q. Left: CMT and FDTD
spectra for TE modes. Right: CMT spectra (four basis modasjpeited directly, and by interpola-
tion of data evaluated at the nodal wavelengt@d3um, 1.085um (linear) and 1015um, 1.05pm,
1.085um (quadratic interpolation) (lllustrations taken from REf]).

Fig [ZI2 shows examples for the corresponding field distions. Off-resonance,
most of the input power is directly transferred to the thioyprt. At the wavelength
corresponding to one of the minor resonances, the fieldrpatt¢he cavity exhibits
a nearly circular nodal line corresponding to the radialimim in the profile of
the first order WGM (cf. Fid214). As seen in Hig.2.13, here finst order mode
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carries most of the power inside the cavity. The deviatiomfthe circular pattern
is caused by the interference with the fundamental WGM, Wwigalso excited at
this wavelength with a small power fraction. The major resure related to the fun-
damental mode is of higher quality, with much larger intgnsi the cavity, almost
full suppression of the waves in the through-port and neeoiyplete drop of the
input power.
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Fig. 2.14 Snapshots of the real physical electric field for the miskdiesonator of Selc. 2$.2;

CMT simulations with four basis modes. The wavelengthsespond to an off-resonance state
(left), and to minor (center) and major resonances (righite gray scale levels of the plots are
comparable (lllustration taken from Ref_17]).

2.7 Circular optical microresonatorsin 3-D

So far we restricted ourselves to two spatial dimensionsder to explain concepts
and phenomena behind the CMT model, and for purposes obiigarumerical as-
sessment. There are practical circumstances, howeverewiee2-D setting is defi-
nitely inadequate. e.g. when an effective index approxXonateems not reasonable,
when the assumption of decoupled polarizations appears itwappropriate, when
the vectorial nature of the fields might be important (as end¢hse of cavity or bus
cores with pronouncedly hybrid modes), or the obvious césewically coupled
microresonators. One then has to resort to fully 3-D sinmat The abstract res-
onator model in SeEA.2 remains applicable, irrespegtivethe number of spatial
dimensions. With the exception of an additional integrationg the third, vertical
y-axis, the CMT formalism for the couplers is essentiallynitieal to what has been
discussed in Selc.2.4. Thus the extension of the present @gdhator model to
3-D [18] should be straightforward, in principle.

The real additional complexity is the task of generatingrérgpuired basis fields.
Analytic solutions, as in 2-D, for modes of straight and —exsally — bent waveg-
uides in 3-D, i.e. with 2-D cross sections, do not exist; ntoa mode solvers
have to be applied. For the simulations discussed in thisosewe could rely on a
semi-analytical technique based on film mode matching (FNE)[49,[50]. The
modal eigenvalue problem is addressed by dividing the wadegcross section
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plane into vertical slices such that the permittivity p@fi constant along the hor-
izontal/radial axis. On each slice the modal field is expadmnitprously into eigen
functions (modes of 1D multilayer slab waveguides) assediavith the local re-
fractive index profile, where the sets of eigenfunctionsdiseretized by Dirichlet
boundary conditions sufficiently far above and below theresting region around
the waveguide core. 3-D modes are obtained by connectingxha&nsions on the
individual slices such that the full field satisfies all confity requirements at the
vertical interfaces, and shows the appropriate behavidhénoutermost regions.
The rigorous mode profile approximations are representasdieanalytically, which
proves to be advantageous for the subsequent use as batgswigiin the CMT
formalism (integrations).

For the 3-D coupler introduced in FIg-2Z115(a), the coupletifansatz[[Z22)
applies, with an additional nontrivial dependence on tht¢iced y-axis, introduced
by the — now truly vectorial — mode profileE{2121) afid (2.20)ttee straight
and bent cores. The functionB[{2.23) and consequently Htexelements[(Z25),
Z28) receive an additionagtintegration. Otherwise the reasoning of SECS. P.4.1,
22, andCZZ13 remains valid.
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Fig. 2.15 (a): Coupler setting in 3-D, a cross section perpendicaléne direction of propagation
atz= 0. A disk cavity of radiuR, core refractive indery and heighty is coupled to bus waveg-
uides of core refractive index, width w and heighths. Here the disk and the bus waveguide are
placed at different levels, at a vertical distarscand at a horizontal positiog. Negative values
for g represent overlapping componems.andnc are the refractive indices of the substrate and
cladding regions. (b) and (c): Choices for constitutingistures for the CMT analysis. In (b) the
substrate is included into the cavity mode analysis, wissités.excluded in (c) (lllustrations taken
from Ref. [18]).

One should be aware that the choice of the constituting tstress, i.e. of the
refractive index profiles for which the basis modes are dated, is not at all unique.
For the structure of Fif.2JL5(a), for example, the substratld be included into the
computation of the cavity mode (b), or omitted (c). In thetfoase the permittivity
profile &, of the cavity is closer to the true permittivigyof the full coupler. Hence
their difference, i.e. the perturbation [0{2.26), is smatid one can expect a better
overall approximation. Option (b) also allows to take th#ience of the substrate
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on the cavity modes into account. As an added benefit, thgrade[ZZZ5) in the
coupled mode equations extend only over the disk and thiglstr@aveguide cores,
not over the substrate domain. As a disadvantage, one hasalzulate the cavity
modes for different vertical separatiogasThis can be avoided in the setting (c) of
Fig.ZI%. In general, the choice of the constituting stites and the selection of the
basis fields is a matter of physical intuition and of convan&for the subsequent
numerics. For the present configuration with low to moddratex contrast between
substrate and cladding, we observed hardly any differdtte [

The performance of the coupler of Hig-2.15 is affected by lbé vertical sep-
arations and the relative horizontal core positignTheir influence on the elements
of the coupler scattering matrix is shown in fig.-2.16. Whilegorous explanation
of these variations on the basis of modal interaction stren@s in the 2-D case,
turns out to be difficult, the qualitative behavior can dt#l understood. For large
horizontal separationg due to less mode interaction, all self coupling coeffigent
(a), (d) tend to 1, and the cross coupling coefficients (§)(€3, (f) vanish. Also, the
cross coupling coefficients satisfy the self consistenquirement of reciprocity. A
reduction of the vertical separation ((a), (b), (c) vs. (d), ()) increases the strength
of the interaction. For the small vertical distance, alsoittteraction (f) between the
cavity modes, affected by the presence of the straight &océgarly no longer neg-
ligible. Comparisons, as far as possible, of these CMT tesvith simulations by a
beam propagation method show a reasonable agreemént [18].
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Fig. 2.16 Scattering matrix elements of the 3-D couplers of EIg.R di5us the relative horizontal
core positiong, for different vertical separatiors The CMT computation is based on the single
mode of the straight core (index s), together with the firstehowest order modes (b0, b1, b2)
of the disk cavity. (a, d): self coupling coefficients; (b, &)oss coupling straight/bent core; (c, f):
cross coupling between bend modes. The coupler consistiafight waveguide withv = 2.0pm,

hs = 0.140um, ns = 1.98,ns = 1.45,n;. = 1.4017, and a disk cavity withy = 1.6062,hg = 1.0um,

R = 100um (lllustrations taken from Re{.[18]).
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The resultant effect of the relative vertical and horizbotae positions on the
spectral response of the full 3-D vertically coupled midskeresonator is depicted
in Fig [ZIT. The data is computed with a constant scattemiatix at the reference
wavelengthh = 1.55um [18] (cf. Sec[Zb). For configuration (a) with moderate in-
teraction strength, one observes a set of three resondrategppear periodically,
each corresponding to one of the three low loss cavity madesvied. Reducing
either the horizontal separation (b) or the vertical disggft) leads to much stronger
coupling with deteriorated resonances. The resonancectesistics disappear al-
together in the somewhat extreme situation (d).
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Fig. 2.17 Spectral response of the vertically coupled microdiskmasar consisting of two iden-
tical couplers as in FifZ16 with different vertical segtanss, and horizontal positioning
(llustrations taken from Ref]18]).

2.8 Concluding remarks

The ab-initio frequency domain model, as discussed in thépter, originates from
the physical notions that are commonly used to describeuthetibning of circular
microresonators. Bend modes supported by the segments ohthor disk-shaped
cavities, together with modal fields of the straight bus spmnstitute the basis
for the quantitative coupled-mode-theory of the evaneseame interaction in the
coupler regions.

For the present frequency domain description, it is stitfagvard to take into
account material dispersion. Since the spectral resperseluated as a scan over
vacuum wavelengths, the quantities that enter the CMT épsatan be determined
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directly for the material properties at the respective Wavgths. The remarks from
Sec[Zb on interpolation schemes for efficient spectrurtuatian apply as well.

Unlike with other common, purely numerical methods, herehaee convenient
access to all local modal amplitudes, which allows charattg and analyzing the
resonances. One observes that, for most reasonable catifbgis; only one or a
few cavity modes play a significant role. It is then possildeatcurately predict
the spectral response of the device in question by very eficiquasi-analytical
calculations. Our thorough study of the 2-D version of thedelserves to explain
all concepts; the examples permit a thorough benchmarléngpg rigorous finite-
difference time-domain calculations. Extension of thenfalism to realistic res-
onators in 3-D is straightforward. Here in particular thenputational advantages
of the CMT approach are revealed, since hardly any othen, exalerately efficient
simulation tool is available for practical design work.

Beyond the vertically coupled micro-disk resonator of £&8, the approach has
shown to be sufficiently flexible to handle also quite exotid 8onfigurations, like
the device with hybrid ring cavity and pedestal waveguidd®ed. [18]. Finally, the
CMT model is ideally suited to incorporate small change$@donfiguration, e.g.
for purposes of the evaluation of fabrication tolerance$popredicting the effects
of tuning mechanism§[8,51].
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